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Machine Learning

In a typical supervised learning problem, we are given a training dataset ¥ = {(x;, y,) }?;1.

We want to learn a model that predicts the right output y for future inputs x.

We start from a parametric function f, (x), and look for a good set of parameters w

by minimizing a loss function £ g, (w).

Example (linear regression)

Parametric function: f, (x) = w - x

N

1
L?loss: ZLow) = N Z (i) — yi)z
=1

Picture by Sewaqu, https://commons.wikimedia.org/w/index.php?curid=11967659



How to find the parameters: Stochastic Gradient Descent

We want to find the parameters w that minimize
a loss function

1 N
Zow) =~ 2} £, 05 )

Gradient Descent "\~ —

Algorithm (SGD):
1. Sample an example (x;, y;) from the dataset.

2. Compute the gradient of the per-sample loss g; :=V 7 (x;, y.)
3. Update the network parameters w' <~ w — 5 g,



A prototype problem

Suppose that our task is to predict some real number associated with an input image.
Example: predict the age of a dog.

We want to learn a model f, (x) that predicts the right target value of future images.



Linear Is not enough: Deep Neural Networks

& + B Non linear separable

A Linear separable
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Deep neural networks: we can approximate any continuous function by alternating
(parametric) linear functions and point-wise non-linearities o, such as o(x) = max(0, x).

Jw(X) =00 ® 0coe® 0. 000D (X)
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The loss landscape

The loss function has now many local minima with similar training error
(overparametrization), but they can have very different test error (generalization).

This happens because the neural network can overfit to irrelevant information.

Li et al., Visualizing the Loss Landscape of Neural Nets, 2018



(Geometric nuisances

Let a group G act geometrically on the data.

x — “dog”

We want our function f, (x) to be group invariant.



G-invariance and GG-equivariance

Let G act on two sets X and Y. A function f: X — Yis:
G-invariant if /(g - x) = f(x).

G-equivariant if f(g - x) = g - f(x).

The composition of equivariant functions is equivariant.

Any equivariant function f can easily be made invariant, for example using

f(x) = max g - f(x).

gelG

We can write an invariant function as a composition of simpler equivariant functions.



(z-convolutions

The only G-equivariant linear functions are G-convolutions:

X ke k(1) = J x(ug ™ Yk(g)du(g)
G

Example: Let G = Z? be the translation group on 7. We can think of an image as a
function x: Z? — R. The only translation equivariant operators are Z*-convolutions:
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Picture from http://diplabs.blogspot.com/2012/04/template-matching-using-normalised.html



http://diplabs.blogspot.com/2012/04/template-matching-using-normalised.html

Deep Convolutional Neural Networks

We can approximate any G-equivariant function by alternating linear G-equivariant
operations (convolutions) and point-wise non-linearities o.

Jo(X) =00@, coo®, o.. 000D (X)

1

We learn the convolution kernels by the loss function using SGD.
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Structural information vs Noise

The fact that is a rainy outdoor scene is structural information of the image, the positions
of the rain drops is pure randomness (noise).

Picture from https://buffalonews.com/2019/06/16/rain-will-return-this-week-after-record-setting-saturday/
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Kolmogorov's complexity

The Kolmogorov complexity of a string is the length of the shortest
program that can output that string. (Defined up to an O(7) factor)

Examples

A random sequence of length n of 0 and 1’s:
x=10001110110...700107007110710 K(x) =n + O(1)

A repeating pattern of 0 and 1’s has:
x =10701070101....10710107010710  K(x) = O(1)

The digits of mt are statistically random, but have low complexity:
X =3.141592653589793238462643... K(x) = O(1)
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The Kolmogorov Structure Function

Define the Kolmogorov Structure Function as:

S()= min log|Z]
K(Z)<t, x€Z

/

Cost of encoding the Cost of encoding the

A

“model” Z string x using the model

And the Structure Complexity as:

€x)= min K2)
K(Z)+log|Z|=K(x)

sufficiency

line

Vereshchagin and Vitanyi, Kolmogorov's Structure Functions and Model Selection, 2002

Structure complexity

G (x)

13




The Structure Function of a dataset

The structure function of the dataset D is: S.,(f) = min Lg(w)
Kw)<t

Increasing the complexity of the model leads
to big gains in accuracy: we are learning the structure of the problem.

After learning all the structure, we can only

~memorize: inefficient asymptotic phase.
" Tangent = 1 in the asymptote: Need to store 1

bit in the model to decrease the loss by 1 bit

Training Loss

..
~
~
~
~
~
~
~
~
-~
-
~
~
~
~
-~
~
~
~
~
..
~

Kolmogorov complexity of model

But how is K(w) measured?

A., Mbeng, P, Soatto, Information Complexity of Tasks, their Structure and their Distance, 2019
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The Information in the Weights

S54() = min Lg(w) equivalently min  K(w)
K(w)<t Lo,(w)<t’

How do we measure the complexity of a DNN? Codifying a particular set of weights as real
numbers requires infinite information.

Keeping Neural Networks Simple by Minimizing
the Description Length of the Weights

Geoffrey E. Hinton and Drew van Camp
Department of Computer Science
University of Toronto

10 King’s College Road
Toronto M5S 1A4, Canada

ldea: Codifying noisy weights requires finite information
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Information in weights and flathess

Flat minimum

L(w)

Need to encode exact Robust to coarse w
position encoding

The minimum encoding length of the weights (to obtain a given loss) is upper-
bounded by the flathess of the minimum:

O [ G
(w) < + det(AHw) + 1)

/12

Where H(w) is the Hessian of the loss function computed in w. Changing A changes the
trade-off between L(w) and K(w).
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Sharp vs Flat Minima

Fitting random labels (pure memorization) leads to sharper minima in practice.

(a) natural label (b) random label

This Is compatible with sharpness being a measure of information in the weights.

Pictures from Zhang et al, Theory of Deep Learning lll: Generalization Properties of SGD, 2017
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Bias-variance tradeoff

10.0 el = 100 §

Total error 5 9
Variance Gé) oo
é Optimal model §

= 8.5 Optimal DNN

8.0
..................... Optimal DNN 10° 10° 10°
......... K(W)
Number of parameters Information complexity

i What matters for generalization is not the number of weights, j
" but the information they contain.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018 e



How to find flat minima: SGD

Stochastic Gradient Ny g

Recall that we minimize the loss function using SGD.

Gradient Descent "\~

1 N
Lp(w) = — D 4% )
=1

Let g, =V £ (x;, ;) be the gradient of the j-th sample. Note that V L,(w) = [E[g.].

Hence: we can think of g. = V Ly(w) + n; as being a noisy version of the real gradient:

GD Wy < w,—nV, Ly(W)

SGD  w < w,—nV, Ly(W)+nn,

SGD is gradient descent plus noise

SGD is more likely to escapes from sharp minima than GD.
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Flathess and Invariance to Nuisances
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Representation

Let z = fw(X) be a layer of a network. To a first order approximation, the
information that it contains about a nuisance is bounded by:

Ieff(Z; Ifl) < (C+H+ IOg det (‘ fow(x)t J; H(W) Jf fow(x) ‘ )

Flathess

where F(w) is the Fisher Information of the weights, Jr is the Jacobian of fiw w.r.t. w.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



Transfer learning

Deep Networks have wide applications because they can transfer information between tasks.

Training on small dataset

-+ Bad generalization
Lidp
Random initialization
"o

»  (Good generalization!
Wp

Training on small dataset

What is the transferable information between tasks?

21



What is the distance between two tasks?
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A Topology on the Space of Tasks

Distance between tasks:

A, - Y, = (9,9, —C(I)

Complexity of Complexity of
learning together  learning one

That is, how much more structure do we need to learn?

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019
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https://arxiv.org/abs/1904.03292

A Topology on the Space of Tasks

A, - 9, = K(D,9, —K(D)
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A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019
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Critical Learning Periods in Deep Networks
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A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018
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Critical learning periods and Information in Weights

Sensitivity to deficits peaks when network is absorbing information.
Is minimal when the network is consolidating information.

Fisher Information and deficit sensitivity

600 — Fisher trace
- Sensitivity
500
400
300
200
100
0 50 100 150 200
Epoch

Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018
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Information is physical

How can the Fisher Information affect the learning dynamics?

1
Fisher Irfformation during training

Fisher Information trace
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A path-integral approximation

1) Approximate SGD with gradient descent + white noise. Use MSR formalism to obtain
probability of following a path w(t):

p(w(t)|wo, tg) = eD | £

2) Assume most path are perturbations of distinct “critical” paths: R e

3) Approximate the loss function quadratically along critical paths, and integrate out the
perturbations to find total probability of crossing bottleneck:

. CE 1t 12
plwy,trlwo,tg) =€ / e~ 25 Jig 2%Y) +V(“(t))dtdu(t)
wo
Static part Dynamic part
Depends only on the difference  Depends on the existence of
in information between initial likely path between the two

Achille, Mbeng, Soatto, Dynamics of learning, arXiv 2018 and f|na| p0|nt

28



Are flat minima an epiphenomenon?

Fisher Information vs. deficit end
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...but generalization quality is decided
here, far from convergence to minima
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The PAC-Bayes generalization bound

PAC-Bayes bound on the test error: (Catoni, 2007; McAllester 2013)

Liost < —— [Ew[Lo(w)] + BKL(G(WID) || p(w))

=7 L
Moreover, the sharpest bound is obtained when E[KL] = /(w; D).

i What matters for generalization is not the number of weights, '
| but the information they contain. |

This gives non-vacuous generalization bounds.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
Dziugaite and Roy, Computing non-vacuous generalization bounds for deep neural networks, UAI 2017 31



