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Machine Learning
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In a typical supervised learning problem, we are given a training dataset � . 

We want to learn a model that predicts the right output �  for future inputs � .

𝒟 = {(xi, yi)}N
i=1

y x

We start from a parametric function  � , and look for a good set of parameters � 

by minimizing a loss function � .

fw(x) w
ℒ𝒟(w)

Example (linear regression)

Picture by Sewaqu, https://commons.wikimedia.org/w/index.php?curid=11967659

ℒ𝒟(w) =
1
N

N

∑
i=1

(fw(xi) − yi)2
�  loss:L2

Parametric function:  �fw(x) = w ⋅ x



How to find the parameters: Stochastic Gradient Descent
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ℒ𝒟(w) =
1
N

N

∑
i=1

ℓw(xi, yi)

Algorithm (SGD): 

1. Sample an example �  from the dataset.

2. Compute the gradient of the per-sample loss �  


3. Update the network parameters �

(xi, yi)
gi := ∇wℓw(xi, yi)

w′� ← w − η gi

We want to find the parameters w that minimize

a loss function



A prototype problem
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Suppose that our task is to predict some real number associated with an input image.

Example: predict the age of a dog.

We want to learn a model �  that predicts the right target value of future images.fw(x)

Age



Linear is not enough: Deep Neural Networks
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fw(x) = σ ∘ ΦwL
∘ σ ∘ ΦwL−1

∘ … ∘ σ ∘ Φw0
(x)

Deep neural networks: we can approximate any continuous function by alternating 
(parametric) linear functions and point-wise non-linearities � , such as � .σ σ(x) = max(0, x)



The loss landscape
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Li et al., Visualizing the Loss Landscape of Neural Nets, 2018

The loss function has now many local minima with similar training error 
(overparametrization), but they can have very different test error (generalization).

This happens because the neural network can overfit to irrelevant information.

ℒ𝒟(w) =
1
N

N

∑
i=1

(fw(xi) − yi)2



Geometric nuisances

�7

We want our function �  to be group invariant.fw(x)

�x = “dog” �g ⋅ x = “dog” ∀g ∈ Aff (ℝ2)

Let a group G act geometrically on the data.



G-invariance and G-equivariance
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G-equivariant if � .f(g ⋅ x) = g ⋅ f(x)

G-invariant if � .f(g ⋅ x) = f(x)

Let G act on two sets �  and � . A function �  is:X Y f : X → Y

The composition of equivariant functions is equivariant.


Any equivariant function �  can easily be made invariant, for example using
� .


We can write an invariant function as a composition of simpler equivariant functions.

f
̂f(x) = max

g∈G
g ⋅ f(x)



G-convolutions

�9Picture from http://diplabs.blogspot.com/2012/04/template-matching-using-normalised.html

The only G-equivariant linear functions are G-convolutions:

x ⋆ k (u) = ∑
t∈ℤ2

x(u − t) k(t)

x ⋆G k (u) = ∫G
x(ug−1)k(g)dμ(g)

Example: Let �  be the translation group on � . We can think of an image as a 
function  � . The only translation equivariant operators are � -convolutions:

G = ℤ2 ℤ2

x : ℤ2 → ℝ ℤ2

http://diplabs.blogspot.com/2012/04/template-matching-using-normalised.html


Deep Convolutional Neural Networks
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fw(x) = σ ∘ ΦwL
∘ σ ∘ ΦwL−1

∘ … ∘ σ ∘ Φw0
(x)

We can approximate any G-equivariant function by alternating linear G-equivariant 
operations (convolutions) and point-wise non-linearities � .σ

We learn the convolution kernels by the loss function using SGD.



Structural information vs Noise
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The fact that is a rainy outdoor scene is structural information of the image, the positions 
of the rain drops is pure randomness (noise).

Picture from https://buffalonews.com/2019/06/16/rain-will-return-this-week-after-record-setting-saturday/

https://buffalonews.com/2019/06/16/rain-will-return-this-week-after-record-setting-saturday/


Kolmogorov’s complexity
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The Kolmogorov complexity of a string is the length of the shortest 
program that can output that string. (Defined up to an O(1) factor)

Examples

A random sequence of length n of 0 and 1’s:


x = 10001110110…1001010011010      K(x) = n + O(1) 

A repeating pattern of 0 and 1’s has:

x = 10101010101….101010101010      K(x) = O(1) 

The digits of π are statistically random, but have low complexity:

x = 3.141592653589793238462643…      K(x) = O(1) 



The Kolmogorov Structure Function
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Cost of encoding the 
“model” �Z

Cost of encoding the 
string �  using the modelx

Define the Kolmogorov Structure Function as:

Vereshchagin and Vitanyi, Kolmogorov's Structure Functions and Model Selection, 2002

Z = {rainy day}

𝒞(x) = min
K(Z)+log|Z|=K(x)

K(Z)

Sx(t) = min
K(Z)≤t, x∈Z

log |Z |

And the Structure Complexity as:

Z = {x}
Structure complexity

𝒞(x)
K(x)



The Structure Function of a dataset
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S𝒟(t) = min
K(w)≤t

L𝒟(w)

A., Mbeng, P., Soatto, Information Complexity of Tasks, their Structure and their Distance, 2019

The structure function of the dataset �  is:𝒟

Tr
ai

ni
ng

 L
os

s

Kolmogorov complexity of model

Increasing the complexity of the model leads

to big gains in accuracy: we are learning the structure of the problem.

After learning all the structure, we can only 
memorize: inefficient asymptotic phase.

Optimal
Tangent = 1 in the asymptote: Need to store 1 
bit in the model to decrease the loss by 1 bit

Structure complexity of �𝒟

But how is �  measured?K(w)



The Information in the Weights
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How do we measure the complexity of a DNN? Codifying a particular set of weights as real 
numbers requires infinite information.

Idea: Codifying noisy weights requires finite information

S𝒟(t) = min
K(w)≤t

L𝒟(w) min
L𝒟(w)≤t′�

K(w)equivalently



Information in weights and flatness
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L(w)

w

Sharp minimum Flat minimum

Proposition. The minimum encoding length of the weights (to obtain a given loss) is upper-
bounded by the flatness of the minimum:

K(w) ≤
∥w∥2

λ2
+ det(λ2H(w) + I)

Where H(w) is the Hessian of the loss function computed in w. Changing �  changes the 
trade-off between L(w) and K(w).

λ

Need to encode exact 
position

Robust to coarse 
encoding



Sharp vs Flat Minima

�17

(a) natural label (b) random label

Figure 12: Illustration of the landscape of the empirical loss on MNIST.

Architecture Number of Parameters Training Accuracy Test Accuracy

MLP 1x512 1,209,866 100.0 50.51
Alexnet 1,387,786 100.0 76.07

Inception 1,649,402 100.0 85.75
Wide Resnet 8,949,210 100.0 88.21

Table 2: A number of different network architectures are trained on CIFAR-10. We turn off all the regularizers in order to avoid implicitly
constraining the hypothesis space size. We found that despite the network size continuously increases, the test performance does not drop,
but even improves.

Pictures from Zhang et al, Theory of Deep Learning III: Generalization Properties of SGD, 2017

Fitting random labels (pure memorization) leads to sharper minima in practice.

This is compatible with sharpness being a measure of information in the weights.



Bias-variance tradeoff
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Variance

Bias2

Total error

Number of parameters

E
rr

o
r

Optimal DNN

Optimal model

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018

Optimal DNN

Information complexity

K(w)

What matters for generalization is not the number of weights, 
but the information they contain.



How to find flat minima: SGD
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Recall that we minimize the loss function using SGD.

LD(w) =
1
N

N

∑
i=1

ℓw(xi, yi)

Let �  be the gradient of the i-th sample. Note that � .


Hence: we can think of �  as being a noisy version of the real gradient:  

gi = ∇wℓw(xi, yi) ∇wLD(w) = 𝔼[gi]

gi = ∇wLD(w) + ni

wt+1 ← wt − η∇wLD(W)

wt+1 ← wt − η∇wLD(W) + η ni

GD

SGD

SGD is gradient descent plus noise

Proposition. SGD is more likely to escapes from sharp minima than GD.



Flatness and Invariance to Nuisances

�20A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018

Proposition. Let z = fw(x) be a layer of a network. To a first order approximation, the 
information that it contains about a nuisance is bounded by:

where F(w) is the Fisher Information of the weights, Jf is the Jacobian of fw w.r.t. w.

Ieff(z; n) ≤ C + log det (|∇x fw(x)t Jt
f H(w) Jf ∇x fw(x) |)

Nuisance n 
affecting the input Representation z

Flatness



Transfer learning
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Deep Networks have wide applications because they can transfer information between tasks.

Random initialization

Training on small dataset

Pre-training on large dataset

Bad generalization

Good generalization!

�w0

�wD

�w1 �wD

Training on small dataset

What is the transferable information between tasks?



What is the distance between two tasks?
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MNIST
Fashion MNIST

SVHN

CIFAR-10
ImageNet

KITTI



A Topology on the Space of Tasks
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Distance between tasks: 

That is, how much more structure do we need to learn?

d(𝒟1 → 𝒟2) = C(𝒟1𝒟2) − C(𝒟1)
Complexity of 

learning together
Complexity of 
learning one

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019

Notice that this is an asymmetric distance

https://arxiv.org/abs/1904.03292


A Topology on the Space of Tasks

�24

Difficult task to easy task

Easy task to difficult task
Similar tasks cluster together

d(𝒟1 → 𝒟2) = K(𝒟1𝒟2) − K(𝒟1)

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019Figure 2: (Left) Reachability between tasks, based on the relative complexity. Each element of
the matrix shows the time to convergence when fine-tuning from a pre-training classification task
(columns) to a target task (rows). White cells denote no convergence. Notice that semantically similar
task are close to each other, and that it is easier to go from a complex task to a related simple task
than vice-versa. (Center) Training epochs necessary to fine-tune from one task (row) to another
(column). (Right) Scatter plot of the relation between number of steps necessary to converge and the
reachability of two datasets.

our model prediction, the time to converge scales with the complexity of the dataset, i.e., in this case
with the amount of random labels in the dataset.

Changing the batch size. Another way we can act on the time to converge is to change the diffusion
constant D of the network: We know that for a fixed learning rate the diffusion constant scales as
D = c/B, where B is the batch size. Figure 1 (center) shows that changing the batch size changes
the time to convergence, following the predicted trend.

7.2 Time to fine-tune between tasks

In the previous section we tested the relation between the complexity of the task and the time
employed by the network to converge, starting from a random initialization. In practice, we may start
from the minimizer of another task, rather than from a random initialization (fine-tuning). In this
case, we expect the time to converge to depend not on the complexity of the task, but rather on the
reachability of the new task from the previous task (Section 4).

In Figure 2 (Left) we show for several popular datasets the reachability between tasks computed using
the definition in Section 4 and approximated with a ResNet-18 using eq. (4). Notice that this matrix
makes intuitive sense: semantically similar tasks are closer to each other, e.g., CIFAR-100 is close to
CIFAR-10 and to its two subsets of artificial and natural objects. Similarly, Fashion MNIST (fashion)
is close to color inverted Fashion MNIST (ifashion) and to MNIST. Moreover the matrix captures
the fact that it is generally easier to learn a task after training on a more complex, related, task (such
as going from CIFAR-100 to CIFAR-10), rather than trying to learn a complex task starting from a
simple one (e.g., going from MNIST to CIFAR-100).

From eq. (16) and eq. (15) we know that the distance at level � may be compared with the matrix
of the time necessary to fine-tune from one task to another (i.e., the training time until we reach
some loss threshold), which we show in Figure 2 (Center). In Figure 2 (Right) we show the relation
between time to fine-tune and reachability for several pairs of datasets, which again follows the
theoretical prediction between the two.

8 Discussion

In this paper we have laid the foundations to enable quantifying the ease of transfer learning. This
entails first defining and formally characterizing tasks, and then establishing some sort of topology in
the space of tasks. To the best of our knowledge, we are the first to attempt this. We bring to bear
tools from diverse fields, from Kolmogorov Complexity to quantum physics, to enable defining and
computing sensible notions of distance that correlate with ease of transfer learning. In the process,
we discover interesting connections between seemingly disparate concepts: The first is between the
notion of task reachability, which we introduce, and the Kolmogorov Structure Function. This in turn

8

https://arxiv.org/abs/1904.03292


Critical Learning Periods in Deep Networks

�25A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

Deficit Normal training

0 160+NN



Critical learning periods and Information in Weights
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Sensitivity to deficits peaks when network is absorbing information.

Is minimal when the network is consolidating information.



Information is physical
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How can the Fisher Information affect the learning dynamics?

Critical period



A path-integral approximation
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p(w(t)|w0, t0) = e
1
D

R
L
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1) Approximate SGD with gradient descent + white noise. Use MSR formalism to obtain 
probability of following a path w(t):

2) Assume most path are perturbations of distinct “critical” paths:

3) Approximate the loss function quadratically along critical paths, and integrate out the 
perturbations to find total probability of crossing bottleneck:

p(wf , tf |w0, t0) = e��L(w;D)

Z wf

w0

e�
1

2D

R tf
t0

1
2 u̇(t)

2+V (u(t))dtdu(t)
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Static part Dynamic part
Depends only on the difference 

in information between initial 
and final point

Depends on the existence of 
likely path between the two

Achille, Mbeng, Soatto, Dynamics of learning, arXiv 2018



Are flat minima an epiphenomenon?
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Final sharpness 
correlates with 
generalization…

…but generalization quality is decided 
here, far from convergence to minima



THANKS!

Matteo Rovere Giovanni Paolini Stefano SoattoGlen Mbeng



The PAC-Bayes generalization bound
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PAC-Bayes bound on the test error: (Catoni, 2007; McAllester 2013)

This gives non-vacuous generalization bounds.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018 
Dziugaite and Roy, Computing non-vacuous generalization bounds for deep neural networks, UAI 2017

Moreover, the sharpest bound is obtained when E[KL] = I(w; D).

What matters for generalization is not the number of weights, 
but the information they contain.

Li2bi 
1

1� 1
2�

⇥
Ew [LD(w)] + � KL(q(w |D) k p(w))

⇤
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