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Menu

are important in machine learning:
* The representation of the test image (activations)
* The representation of the train dataset (weights)

In a DNN, the optimality of one implies optimality of the other ( )

Information gives an distance on the space of learning tasks,
which allows prediction of transfer learning.



What is an optimal representation (of test data)?

X —— 7 — sy

data representation task
y = label, segmentation, reconstruction, ...
[

Nnuisances

Sufficient I(z; v) = 1(x; V)
Nuisance invariance nity=1In z=0
Minimal [(X; z) = minimal

Compositional Minimal component correlation?

A. and Soatto, Information Dropout: finding optimal representation through noisy computation, PAMI 2017 3



A Variational Principle for representation learning:
The Information Bottleneck principle

A minimal sufficient representation z of the data x for the task y is the solution to:
minimize ;1 1(2; x)
s.t. I(z;y) = 1(x;y)
Information Bottleneck Lagrangian: (Tishby et al., 1999)

Z(p(z|x)) = H(y|z) + p1(z; x)

cross-entropy regularizer



Invariant it and only if minimal

Recall. A representation z is minimal for the task y if it minimizes /(z; x) among the
sufficient representations.

Theorem (A., Soatto) Let z be a sufficient representation and n a nuisance. Then,

[(z;n) < I(z;x)—1(x;y)

Invariance minimality

Moreover, there exists a nuisance n for which equality holds.

Corollary: A representation is maximally invariant if and only if it is minimal

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



The catch

What if we just represent an image by its index in the training set (or by a unique hash)?

< y
24,576 bits 16 bits 4 bits
—  0000000000000000 > 0100
—  0000000000000001 > 0001
—  (0000000000000010 > 0010
—  0000000000000011 g 0101

It Is a sufficient representation and it is close to minimal.



This Information Bottleneck is wishful thinking

The IB Is a statement of desire for future data we do not have:

min L = H, 4(v|z) + B 1(z; x)

q(z|x)

What we have iIs the data collected in the past.

What is the best way to use the past data in view of future tasks?



Test Image
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How do we measure the information in the weights of a DNN?

“roblem. Assume some prior distribution p(w) over the weights. Codifying a
particular set of weights as real numbers requires infinite information.

p(w)




Example: Measuring Information by Adding Noise

Estimate the amount of information by adding noise and measuring the decrease in
performance.

Prediction and Entropy of Printed English
By C. E. SHANNON

(Manuscript Received Sept. 15, 1950)

Example: Shannon (1951) estimates the information content of the English language by
corrupting random letters and measuring the reconstruction error of English speakers.

“Thif is a vevy moisy party” = “This Is a very noisy party”

Shannon, Prediction and Entropy of Printed English, Bell System Technical Journal, 7957 10



Reducing the description length by adding noise

Keeping Neural Networks Simple by Minimizing
the Description Length of the Weights

Geoffrey E. Hinton and Drew van Camp
Department of Computer Science
University of Toronto

ldea: Add noise to the weights to encode with a finite amount of information

|encoding | = KL(g(w|2) || p(w) )

noise

—

p(w) p(w)

11



The Information in the Weights

We want to measure the trade-off between the amount KL( g(w | D) || p(w) ) of noise
added and the accuracy of the network.

Minimum information in
weights...

S(t) = min KL(gw|D) || p(w)) «

S.T. _WNq(W‘@)[L@(W)] <1

. --- SUCh that the expected
training loss Is less than t

Or, equivalently the Lagrangian:

Expected loss Information in the Weights

L =Ey~qwp)lLo(w)] +BKL(g(w|D) || p(w))

optimal noise  fixed prior

A., Paolini, Soatto, Information Complexity of Learning Tasks, 2019

A., and Soatto, Where is the Information in a DNN?, 2019
12



Grounding: The PAC-Bayes generalization bound

PAC-Bayes bound on the test error: (Catoni, 2007; McAllester 2013)

Liost < —— [Ew[Lo(w)] + BKL(G(WID) || p(w))

=7 i

i What matters for generalization is not the number of
" weights, but the information they contain. *

This gives non-vacuous generalization bounds.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
Dziugaite and Roy, Computing non-vacuous generalization bounds for deep neural networks, UAI 2017



The sharpest PAC-Bayes bound is the IB Lagrangian

Which encoding prior p(w) gives the tightest PAC-Bayes bound?

Proposition. On expectation over the sampling of the dataset &, the sharpest

PAC-Bayes bound is obtained when p(w) = [Eg[g(w | D)], in which case
— | KL(gw | D) [[p(w))] = I(w; D).

The Weight Lagrangian then becomes:

L 12~ E @ T 71O

|

IB Lagrangian for the weights

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
McAllester, A PAC-Bayes Tutorial, 2013
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The Information in a Deep Neural Network

L(w) = Hy q(DIw) + BKL(a(w|D) || p(w))

output of training encoding prior

Shannon Information: using the encoding prior p(w) := Eg[g(w | D)]
=l KL] = I(w; )

= Minimizes the PAC-Bayes generalization bound |

' Fisher Information: p(w) = uniform encoding prior

KL = —log| F|

= Implicitly minimized by SGD e g

A., Paolini, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, ArXiv 2019
Hochreiter and Schmidhuber, Flat Minima, Neural Computation 1997
Pictures from Zhang et al, Theory of Deep Learning lll: Generalization Properties of SGD, 2017 15


https://arxiv.org/abs/1904.03292

SGD connects Fisher and Shannon

SGD minimizes the Fisher Information of the Weights. However, generalization is
governed by the Shannon Information.

Proposition. Assuming the dataset is parametrized in a differentiable way, we have:

) = 1) - (o)

Fisher Information

Shannon Information

Where w* = w*(D) is the result of running SGD on dataset D and F(w) is the Fisher
Information Matrix in w.

A. and Soatto, Where is the Information in a Deep Network?, 2019
Brunel and Nadal. Mutual information, fisher information, and population coding, 1998 16



Empirical verification: Phase transition

% Random labels Real labels 0
> ~98 100%
;50 ™22 f <1 = overfitting ‘ f <1 = overfitting
) -5.0 —] 80%
> Q
—4.5 —. -
= =) S 60%
o —-4.0 - )
o) ©Q =
g 3 = £ 40%
S -3.0 2 » / —o— AIl-CNN
CCD —2.5 § 20% | —®— ResNet
'..(_:; 50 y < —&— Small AlexNet
= | p > 1 = underfitting ) 0% '
S -15 <12 102 10! 102
= 2.0 25 3.0 35 4.0 45 2.0 2.5 3.0 3.5 4.0 4.5

Dataset Size ~ logy N
Phase transition

Using the regularized loss:
L(w) = Hpq(D|w) + B8 KL(a(w|D)|[p(w))
For random labels there is a transition between over- and under-fitting at 8 = 7.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018

17



Two Bottlenecks

X — Z

Activations |B f data activations abel

Invariance min £ = H, .(y|z) + BI(z; x) |
C](Z‘X)

W pilx) |
Weights IB |  dataset weights real distribution |
Generalization |}
mv\i/n L= Hpq,z)+BI(D;w)

e Y T DD e GV ET . T e



The Emergence Bound: connecting the two bottlenecks

Let z = fw(X) be a layer of a network, and let z, be the representation obtained by
adding noise to the weigths. We define the effective information as le (x; z) = I(x; zn)

To the first order the information in the activations is given by:

— (2me)k
~ Hix) — log ( 2me)” )
t |t}
Information Fisher Information
In activations IN weights

Take-away: Reducing information in the weights reduces information in the
activations, hence it promotes invariant classifiers.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
A. and Soatto, Where is the Information in a Deep Network?, 2019



Compression of weights leads to compression of activations

We empirically observe that the Fisher Information decreases later during training.

800 The (Fisher) information in the
QD . . o
= weights decreases later in training
= 600
O
@
=
S 400
=
2
G 200 The effective information in the
f activations decreases
0 50 100 150 200

A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018 20



Compression of the weights biases toward invariant and disentangled representations.

airplane
automobile
bird

cat

deer

dog

frog

(car, horse, deer, ...)

horse
ship
truck

OOOOOOO@O0]

FUTURE
Weights Activations
Generalization (PAC-Bayes) Invariance (Emergence)

Minimality (Shannon) Minimality (Fisher)



What is the distance between two tasks?
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A Topology on the Space of Tasks

Distance between tasks:

A(D, = D,) =1(D,D;w) —1(D;w)

Complexity of Complexity of
learning together learning one

That is, how much more information do we need to learn?

cifarl0 0.29 0.31 0.28 0.10 0.01

mnist 08 g 0.20 0.15 0.04 -0.01 o
S —> Difficult task to easy task
ANIE 0.21 0.25 {h_:-_:‘ 0.07 0.12 0.06

ifashion . 0.25 0.12 . 0.10 0.07 0.02 0.01
letters . 0.68 0.72 0.64 D 0.41 0.32 0.33
A
cifar100 . 0.64 0.67 0.62 042 * 0.12 0.07
Easy task to difficult task—

SRR 041 057 055 054 030 010 B Similar tasks cluster together

artificial : 0.58 0.49 0.50 0.27 [0:00

X AY AN
{\9 & \OQ \OQ é@ QQ Qo ‘ (.}fo
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A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019


https://arxiv.org/abs/1904.03292

Scaling this up: TASK2VEC Retrain classifier on:

> Task 1

Probe network Task 2

(fixed)

Task 3

1\

Fisher 1

We compute the Fisher Information for the task using a pretrained set of weights and
measure the distance between the compute the cosine distance between the Fisher:

d(D;, D;) = cos(F, F))

A. et al., TASK2VEC: Task embedding for meta-learning, 2019
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TASK2VEC: Embedding tasks in a metric space

dea: Represent each tasks in a metric space using its Fisher Information Matrix diagonal.

® Actinopterygii (n) Insecta (n) ® Reptilia (n) Neckline (m)
Amphibia (n) ® Mammalia (n) Category (m) ® Pants (m)
Arachnida (n) Mollusca (n) ® Color(m) Pattern (m)

® Aves(n) ® Plantae (n) Gender (m) Shoes (m)

® Fungi(n) ® Protozoa (n) ® Material (m)

e Recovers species taxonomy on
Laurales iNatU raIiSt

Liliales

( ;
D Qe Pinales 5
0 Rosales .
‘. |
¢ [
Falconiformes }

Passeriformes
Corvidae

Formal dresses ' =
Wedding dresses ‘ o A I
Prom dresses @ M "o :

00%°e° o & 3
o @O .0).
e _o O Sl §

i ‘Shoelaces ¢ e ® 0% o ¥
i Winter boots \@;« Y :.«.3 e s | ]
. v ® 069 © ‘
.l; ® 'v
: Sweatpants Denim .
Yoga pants —

Ripped

Recovers a meaningful topology
on hundred of tasks

A. et al., TASK2VEC: Task embedding for meta-learning, 2019



Distance between different tasks

Il

Animations from https://github.com/StanfordVL/taskonomy
Distance matrix from Achille et al,, Task2Vec

on the same Inputs

i Top 5 prediction:
television room
' home theater
hotel room
living room
bedroom

ene Ugtriification

Top 5 prediction:
home theater, hon
sliding door
studio couch, day
patio, terrace
dining table, boar

':'.["' ('Q\)u“o.lig.q

11}
2 1]

”ll....
*.-"-lih

' 1t

Edge Texture
Rgb

Normal
Keypoints2D
Edge Occlusion
Keypoints3D
Depth Zbuffer
Depth Euclidean
Segment Semantic
- Class Scene

- Class Object
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https://github.com/StanfordVL/taskonomy

Proposing an optimal expert for the task

INat+CUB error distribution and expert selection

X Selected expert
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Test Error
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Allows to select the best expert to solve a task and substantially reduce error and
training time.
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A snag: Critical Learning Periods in Deep Networks
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A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018
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Compression of weights leads to compression of activations
Information acquisition behaves in a non-trivial way during training.

Fisher Information during training

800 The (Fisher) information in the
b . ‘ o
= | weights decreases later in training
.é' 600 E
@
= |
S 400 .
E |
E i
G 200 | The eftective information in the

activations decreases

A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018 29
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The Information Complexity of Learning Tasks, their Structure and their Distance,
arXiv:1904.03292 (2019)

TASK2VEC: Task embedding for meta-learning, ICCV (2019)
Critical Learning Periods in Deep Neural Networks, ICLR (2019)
Emergence of Invariance and Disentangling in Deep Representations, JMLR (2018)
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