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Overview



What I1s a task

Classification: Decide the class of an image (the prototypical supervised problem)

Survival: Decide the best actions to take to survive (Reinforcement Learning)

Reconstruction: Decide which information to store to reconstruct the data
(generative models, unsupervised learning)



What is a representation
Any function of the data which is useful for a task.

A simple organism may only need to
know the direction of the light source

Brightness

Popular in Computer Vision before DNNSs,

Corners central to visual inertial systems and AR.

Neuronal activity
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Image sources https://en.wikipedia.org/wiki/Functional magnetic_resonance imaging#/media/File:Haxby2001.jpg, https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging#/media/File:Haxby2001.jpg

Why studying representations in practice?

We can try to solve to the most common tasks, but what about the tails?

Are these two pictures
of the same person?

Is this platypus healthy?

Number of users

Head Tasks

Idea: Provide the user with a powerful and flexible representation that allows them to easily
solve their task.



Some questions in representation learning

What is the best representation for a task”

Which tasks can we solve using a given representation?
The representation used by a health provider is probably not useful to a
movie recommendation system.

Can we fine-tune a representation for a particular task?

Can we provide the user with error bounds? Privacy bounds?



But what is a good representation?

No function of the data (representation) can be better than the data themself for
decision and control (task).

However, most organisms and algorithms use complex representations that
deeply alter the input. In Deep Learning we regularly torture the data to extract

the results:

Three main ingredients of DNNs: Convolutions, RelLLU, Max-Pool

\ Destroy information



Questions

Is the destruction of information necessary for learning?

Why some properties (invariance, hierarchical organization) emerge naturally in
very different systems?



Why do we need to forget?

Let’s assume we want to learn a classifier p(y | x) given an input image x.

In general, to approximate p(y | x) the number of samples
should scale exponentially with the number of dimensions.

If X Is a 256x256 image, this means we would need ~1028462 sgmples.

Then, how can we learn on natural images”?

Nuisance invariance (reduce the dimension of the input)
Compositionally (reduce the dimension of the representation space)
Complexity prior on the solution (reduce the dimension of hypothesis space)



Nuisance Invariance



Nuisance variability

Images from Steps Toward a Theory of Visual Information, S. Soatto, 2011

U = viewpoint i
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How to use nuisance variability

A good representation should collapse images differing only for nuisance variability.

Office BH3531D  ------------ >

Quotienting with respect to nuisances reduces the dimensionality of the space of
images, and simplifies learning the successive parts of the pipeline.
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Group nuisances

Examples: Translations, rotations, change of scale/contrast, small diffeomorphisms

Given a group G acting on the space of data X, we say that a representation f(x) is
invariant to G if:

f(x) =f(gex) foral ge€eG,xeX

A representation is maximal invariant if all other invariant representations are a
function of it.

Well understood for translation and scale. The solution inspired and justifies the use
of convolutions and max-pooling (next class).
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Problems with group nuisances

Rapidly becomes difficult for more complex groups
Groups acting on 3D objects do not act as groups on the image

Not all nuisances are groups (e.g., occlusions)
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More general nuisances

ldea: A nuisance as everything that does not carry information about the task.

Introduce the

min; I(f(x);x) — A I(f(x); task)

Total information Information the representation
has about the task

where I(x; y) is the mutual information. The solution to the Lagrangian (for A = +o0) IS a
maximally invariant representation for all nuisances.

We can thus rephrase the problem of nuisance invariance as a much simpler
variational optimization problem.
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Learning invariant representations

We can approximatively optimize the variational objective using DNNs (Tuesday).

Deeper layers filter increasingly more nuisances

Input Dropout O Dropout 1 Dropout 2

-

B3=0.0001

»
f“*’t_ i W '

3=1.0

Stronger bottleneck = more filtering

A. and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)
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Compositional representations



Compositional representations

Humans can easily solve task by combining concepts:
“FInd a blue large cherry”

We can easily solve this task, even if we have never seen a blue cherry before.
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Compositionally requires disentanglement

To learn a good compositional representation, we first need to learn to decompose
the image in reusable semantic factors:

Color: Blue
< Size: Large
Shape: Cherry

This mitigates the curse of dimensionality: each factor is easy to learn, but combined
they yield exponentially many objects.

3

Factors of variation can be learnt in succession in a life-long learning setting and
used in the future for one-shot or zero-shot learning.

But what are “semantic factors of variation”?
19



Learning disentangled representations

Possible answer through the Minimum Description Length principle:

LvpL($,0) =Eye g, (-1x=) [—log po(x | 2°,5)] 4+ 7KL (gy (z°[x°)||p(2z))— C |°
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Reconstruction error
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Higgins et al., B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017

Burgess et al., Understanding Disentangling in beta-VAE” 2017

Latent traversal

Azimuth

Elevation

Lighting

Pictures courtesy of Higgins et al., Burgess et al. 20



Learning disentangled representations

Possible answer through the Minimum Description Length principle:

Components of the representation z

Phase transitions during training
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Information in the Weights and
Dynamics of Learning



How, and when, do we learn good representations?
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Critical Learning Periods in Deep Networks

Convolutional Network Kitten
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Test Image

Training Set
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Information in Weights during training

What should we expect from the information in the weights

Maybe something like this?

Information in Weights

Training Epoch
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Information in Weights during training

Not quite so.

Information extraction

Fisher Information trace
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Fisher Information and deficit senS|t|V|ty

1 — Fisher trace
= == Sensitivity

A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

Information consolidation
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Emergence of invariant and disentangled representations

Theorem 1 (informal). Stochastic gradient descent biases the optimization process
toward recovering low information solutions.

W

p(wy,tylwo,to) = e‘Aﬁ(w;D)/ e~ 7b Jif BUOTHV (@)t gy gy

wo

Theorem 2 (informal). In DNNs, low-information classifier have invariant and disentangled
representations.

Minimality of activations

(x; 2)|~ H(x) - ‘Og(

(2me)k )
MGRAED)

Fisher Information of Weights

DNNs are biased toward learning invariant and disentangled

representations.
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Compression of the weights biases toward invariant and disentangled representations.

Testing
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Some consequences

Phase transitions for learning.

CompleXity ~ logm ﬁN

Information

Random labels Real labels
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Distance between tasks



Can we put a distance on the space of tasks?
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CIFAR-1
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A Topology on the Space of Tasks

Information in the Information in one of
joint datasets the two datasets
cifar10 " | 0.29 0.31 0.28 0.10
mnist . 3 0.20 0.15 0.04 - o
— —> Difficult task to easy task

R 0.21 0.25 {E'! 0.07 0.12
ifashion : 0.25 0.12 . 0.10 0.07 0.02 0.01

letters : 0.68 0.72 0.64 D 0.41 0.32 0.33

o el
cifarl00 : 0.4 0.67 0.62 042 -* 0.12 0.07
Easy task to difficult task > o

CIEIE 0.41 057 0.55 0.54 0.30 0. Similar tasks cluster together

artificial

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019
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Lecture 1



Machine Learning

In a typical supervised learning problem, we are given a training dataset ¥ = {(x;, y,) }?;1.

We want to learn a model that predicts the right output y for future inputs x.

We start from a parametric family of function, and look for a good set of parameters w, by
minimizing a loss function & g,(w).

Example (Polynomial curve fitting):

Family of functions: polynomials of degree M !

£ =wy+wix + - + wyxM

[ » reconstruction loss:
N -1y

1
Low) == D () =)

i=1 0 !

Picture from Christofer M. Bishop, Pattern Recognition and Machine Learning
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Overfitting and regularization

If the model is too flexible expressive, overfitting can happen (bias variance trade-off).

1t M=3 - Increase degree M 1} M=9 |

t \ té ]
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Regularization term ~1}

Pictures from Christofer M. Bishop, Pattern Recognition and Machine Learning



How do we find the parameters: SGD

We want to find the parameters w that minimize the loss:

1 N
Low) =— Y 1,(x.y)
N =1

The gradient can be computed as:
the sample gradient

ng@(W) — _'xiﬂyiN@[ waw(xl, yl)] $ waw(xi, yl)’ xl', yl s 9

IS an unbiased estimator of the real gradient

Algorithm (SGD):

1. Sample an example (x;, y;) from the dataset.

2. Compute the gradient of the per-sample loss g; :=V 7 (x;, y,)
3. Update the network parameters w' <~ w —n g

37



SGD as gradient descent with noisy dynamics

V., 2 (x,y) =V L(w)+ noise

(Robbins and Morro, 1951). In a strongly convex optimization problem (e.g., linear regression),
SGD converges to the global minimum provided the learning rate is annealed over time.

38



The shape of the noise

The noise term is non-gaussian and non-isotropic.

V. 2 (x,y) =V L(w)+noise

Not an essential difference for a convex problem But really changes the dynamics in deep learning!

Chaudhari et al., Stochastic gradient descent performs vatriational inference, converges to limit cycles, 2018
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Classic Machine Learning: minimize some loss function on the training data. Hope it
generalizes to the test set

Deep Learning: We don’t want a global minimum, local minima are better. We don’t care
about convergence speed (or about convergence at all). Over-parametrization makes things
work better. Regularization is only needed at the beginning of training (!)

Li et al., Visualizing the Loss Landscape of Neural Nets, 2018



~ Today and tomorrow

Structure of the data '\
(natural images)

/ N — —_ Wednesday

Parametrization of the model Optimization algorithm
(‘ (Deep Networks) (SGD)




Machine learning and information

Machine learning at its core is about extracting useful task information from the data.

How do we define information?

The Bell System Technical Journal

Vol. XXVII July, 1948 No. 3

A Mathematical Theory of Communication
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By C. E. SHANNON

“Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or

conceptual entities. These semantic aspects of communication are
irrelevant to the engineering problem.”
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Entropy

Hp()C) — _pr(x)[—lng(X)]

Shannon coding theorem. The expected minimum coding length (in bits) to encode a sample
of the distribution without loss is equal to the entropy of the distribution.

That is, the entropy measures the “information content” of random variable.

Low entropy
2 bits

Fair coin
Fair die

43



Kullback-Lelbler divergence

Entropy is a particular case of the KL divergence (when qg(x) is discrete and uniform).

p(x) ]
q(x)

KL(p() [14(x)) = .| — log

By Jensen Inequality, the KL-divergence is always positive and it is zero if and only if p(x) =
q).

Cross-Entropy: Hq,p(x) = -pr(x)[—log qg(x)]

H, ,(x) = H,(x) + KL(p(x) || g(y))

Corollary. The cross-entropy is minimized if and only if g(x) = p(x)



Conditional Entropy and Mutual Information

Conditional Entropy: How much information remains in y after having observed x

H(y‘X) — _x,pr(y,x)[_logp(y‘x)]

Mutual Information: How much information remains in y after having observed x

I(x;y) = H(y) — H(y | x)

The mutual information can also be interpreted as the expected divergence between the
distribution of a random variable before and after an observation.

I(x;y) = E, o, [KL(p(y [ ) || p(1)]

45



Our prototype problem: Image classification

Suppose that our task is to classify images into a finite number of classes:

D = {(x;,y;)}:_, where each x; is an image, and each y; is a label.

We want to learn a model p, (v | x) that predicts the right class of future images.

Example. A simple linear prediction model is py(y | x) = 6(Wx), where 6 = (1 + e_’“)_1

46



Cross-entropy loss

We want to maximize the amount of information about the task. Recall that

I(x;y) = H(y) — H,(y|x) = max H(y) — H, ,(y|x)

We introduce the

N

1
W) =H, 1) == > = logp, ] %)
=1

Recall that the cross-entropy is minimized when p, (v | x) is equal to the ground-truth data
distribution.

Alternatively can be seen as computing the MLE of w.

47



Notebook

A fully connected network can easily bring the train error to zero, but still fails to learn.

Fully connected network on CIFAR-10

w——train error
—— test_error

Whdt is missing here?

___________ - Deep Neural Netowrk

0 +— T T T T

T T T T
0 20 40 60 80 100 120 140 160
Epoch



What is a nuisance? It depends on the task!

Having different clothes/hairstyle/pose is a nuisance for the task of recognizing the person.
But what if our task is to tag the clothing style in the image?

Pictures of lan McKellen from https://en.wikipedia.org/wiki/lan McKellen https://en.wikipedia.org/wiki/Gandalf
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Nuisance for a task

Definition (Nuisance) Assume wlog that the input data can be written as x = R(o, n) for a
function R(o, n) and o, n ~ p(o, n). We say that n is a nuisance factor for the task vy if:

p(y|R(o,n)) = p(y|R(o,n’))

foralloe O, n € N.

Equivalently: A random variable n is a nuisance for y if I(y; n) = 0.

Definition (Invariance) A representation z = ¢(x) is invariant to a nuisance n if I(z; n) = 0.

Problem: How do we find a representation of x which is invariant to nuisances?

50



Nuisance variability

Images from Steps Toward a Theory of Visual Information, S. Soatto, 2011

U = viewpoint i

Change of nuisance
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Group nuisances

Assume that a nuisance g € G acts on the data x though a group action:

x=R(0,2) =g -R(o,e) =g-Xx’

Examples:

Aff (R?) = GL(2) X R?

Packet watch: Verifying exabytes of data

James Cowling | July 6, 2016
vy Oom

Buij, 3
=LQie -

Change of pixel positions

Build # Validate # Scale = Optimize

Projective transform

% 2 :
There = nothing more irrportant to Dropbox than the safety of our user data. Whenwe set out to
build Magic Pocket, uur in-hwuse mulli-exabyte storage systerr, duradility was the requirement that

undersco ed all aspeas of the design and implenentation. In this post we'l discuss the
mechanisms we use to ensure tha: Magi: Pocket constanty maintains its ectrernely high leve of
durability.

Change of illumination and o it = e e g Change of pixel values

provides an overview of the architectural features we'll reference within this post. If you don't have
time for that then keed on reading we'll make this pest as accessiole as possible o those who are

contrast e (contrast)

Table-stakes: Replication

Mon ensye
©adin -
i “"“ﬁfor: o s siary,
When most good engineers nezr "durabiity” they think “replicetion”. Hardware can fail, so you n2ed

Qurabiliry,

to store mult ple copies of your data on physically isolated hardware. Replication can be tricky from
amathematical or distributed-systems perspective, but from an operational perspective is the
easiastto getright.

In the case of Magic Pecket (MP) we use 3 variant on Reed-Solomon erasurs coding that is similar to
Loczl Recanstruction Codas, which allows us to enrade and replicate our data for high durability

52
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Local group-invariant descriptor

Reference frame need to be unigue and robust.
Due to occlusions, we can only trust local features and need redundancy

Occlusions
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Need to be robust to all geometric transformations and small deformations.
Need to be robust to changes of illuminations, shadows, ...
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SIFT: Finding the scale

Find “interesting points” (i.e., local maxima and minima) at all scales.

Done by constructing the scale space of the image and finding the first scale at
which a local maximum (minimum) stops being a local maximum (minimum).
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Harris corner detector

Points along edges are not useful keypoints, as they cannot be localized exactly.

ldea: Compute the Hessian at each interesting point. Consider only the points
that have large eigenvalues of the same magnitude.

Ay

Image from https://docs.opencv.org/3.4.2/dc/d0d/tutorial_py_features_harris.html 55



FInd corner orientation

Decide the orientation of the corner by plotting the histogram of the gradients
orientation and find the most frequent orientation.

Cradient
magnitudes

100%

30%

i
04

T

Gaussian blurred image Gradient
orientations| =

=

~~~~~~~~~~~~~

If multiple orientations are very frequent (> 0.8 * max), select all.

Image from http://aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoint-orientation/
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SIFT: Scale-Invariant Feature Transform

Gradient orientation is the only invariant to contrast changes.

ldea: Describe local patch around corner using orientations of the gradients.

Bin together gradients in a patch for
robustness to small deformations
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Image gradients Keypoint descriptor

Image from http://aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoint-orientation/



The state of Computer Vision, circa 2009

Image from http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html

58



Feature matching in Visual-Inertial SLAM system

UCLA LAB

b

CLUSIONS FROM ROADSIDE TREES

Demo video from https://sites.qgoogle.com/site/ktsotsos/visual-inertial-sensor-fusion
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https://sites.google.com/site/ktsotsos/visual-inertial-sensor-fusion

Computer Vision now

How do we learn the complex variability of

natural objects?

60



Lecture 2: Learning optimal
representations



What is a representation?

X —— 7 — sy

data representation task
y = label, segmentation, reconstruction, ...
[

Nnuisances

Sufficient I(z; v) = 1(x; V)
Nuisance invariance nity=1In z=0
Minimal [(X; z) = minimal

Compositional Minimal component correlation?

A. and Soatto, Information Dropout: finding optimal representation through noisy computation, PAMI 2017 62



The work-horse of representation learning:
G-equivariant operators

Let a group G act on the data: We don’t want to learn the same thing over and over again.

f(x) = “dog’ flg - x) = “dog” Vg € Aff (R?)

How do we construct a general group invariant representation?
63



G-invariance and G-equivariance

Let G act on two sets X and Y. A function f: X — Yis:
G-invariant if f(g - x) = f(x).

G-equivariant if f(g - x) = g - f(x).

The composition of equivariant functions is equivariant.
Any equivariant function 1 can easily be made invariant, for example using

f(x) = max g - f(x).

We can write an invariant function as a composition of simpler equivariant functions.

64



Linear G-equivariant operators

G-convolution: Let G be a group with an Haar measure, and let f, k: G — R. We define the
G-convolution:

fxgk(x) = Jf(xg‘l)k(g)dﬂ(g)

Proposition (Kondor et al., 2018) Let G be a compact group, and let L(G) = {f: G — R}.
Then @: L(G) — L(G) is a linear G-equivariant operator if and only if ®(f) =f x g for
some kernel k(x) : G - R.”

Example: Let G = Z? be the translation group on a lattice. We can think of an image as a

function f: 7° — R, so that f € L(G). The only translation equivariant operators are 7°-
convolutions.

f* k()C) — ZtEZZ f(X o t) k(t)

Kondor and Trivedi, On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups, 2018
* The result extends to L(X) where X is anv set on which G acts transitivelv. 65



Convolutional Neural Networks

We want to be equivariant/invariant to translations in the image plane

f(0) = 60, (x)

For the group Z X Z of planar translations of a discretized image:

Picture from http://diplabs.blogspot.com/2012/04/template-matching-using-normalised.html
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Linear Is not enough

A Linear separable

B Non linear separable
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Deep Convolutional Neural Networks

Proposition. We can approximate any G-equivariant representation by alternating linear G-
equivariant operations (convolutions) and point-wise non-linearities o.

JX) 200D eco® 0. oo ®d (X)

1

We learn the convolution kernels by minimizing the cross-entropy loss with SGD.

/ 4 4 = Y CAR
7 w — — TRUCK
- ] | — VAN
_\4 — ] —_—
' P ] — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLU&ETED SOFTMAX

FEATURE LEARNING CLASSIFICATION



What it looks like In practice

class AllCNN(nn.Module):
def init_ (self, n channels=3, n classes=10):

super (A11CNN, self). init ()

n filterl = 96

n filter2 = 192

self.features = nn.Sequential (
nn.Conv2d(n _channels, n filterl, kernel size=3),
nn.RelLU(),
nn.Conv2d(n filterl, n filterl, kernel size=3),
nn.RelLU(),
nn.Conv2d(n filterl, n filter2, kernel size=3, stride=2),
nn.RelLU(),
nn.Conv2d(n filter2, n filter2, kernel size=3),
nn.RelU(),
nn.Conv2d(n filter2, n filter2, kernel size=3),
nn.RelLU(),
nn.Conv2d(n filter2, n filter2, kernel size=3, stride=2),
nn.RelLU(),

)

self.classifier = nn.Sequential(
nn.Conv2d(n filter2, n filter2, kernel size=3),
nn.RelLU(),
nn.Conv2d(n_filter2, n filter2, kernel size=l),
nn.RelU(),
nn.Conv2d(n filter2, n classes),
nn.AvgPool2d(8),

)

def forward(self, input):
features = self.features(input)
return self.classifier(features)

Architecture from Striving for Simplicity: The All Convolutional Net, Spriengberg et al., 2014

It's convolutions all the way down
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Notebook

Train this network
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The effect of depth: increasing expressiveness

Depth is necessary to make the data linearly separable:

Non linearly-separable Linearly-separable

1.0

0.5}

_0.5 -

1075 -0.5 0.0 0.5 1.0

*Knowledge distillation (Hinton et al.) shows that a shallow student network can learn to imitate perfectly a deep teacher, even if it cannot learn directly from the data.



The effect of depth: changing the dynamics

But the main use of depth in modern DNN is to change the learning dynamics (more on this
later), not to increase the expressiveness.

soft labels
predictions

knowledge

hard labels

Training data

Knowledge distillation (Hinton et al., 2015) shows that a shallow student network can learn
to imitate perfectly a deeper teacher, even if it cannot learn from the data equally well.

Picture from DeepVid, Wang et al., 2019 72



Deep parametrization makes linear networks non-linear

Consider a deep linear network:

fx) =W, W, _ ;.. Wyx
While it still implements a simple linear function, the loss landscape is now non-convex and
the SGD dynamics are much more complex.

Example: In a regression problem y=Ax, where x is gaussian, a deep linear network
converges faster on components with the larger singular value.

A fo- B
.
A t/t
A /
<0 mm ()5
~ — —~
< ~ m= 10
- mm <)
B 4 -_ = 2.0
«» 3.0
== ()
4.0
0 0-
0 1 o 0 4 7 10

t/t

n>

Saxe et al., Exact solutions to the nonlinear dynamics of learning in deep linear neural networks, 2013 /3



CNNs for non-image data

In general, we can construct DNNs tailored to some data by finding a group G that naturally
acts on the data and using G-convolutions.

Example. The input is a set of n values x = {x, ..., x, }. Since the output needs to be

invariant to permutation of the elements, we can use r, -convolutions.

« o & e

Example. For weather forecast, we get measurements on a sphere
(earth surface). We want the prediction to be SO(2) invariant, use

SO(2)-convolutions.

Example. Molecules, proteins, ...
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Why neural network?

RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT’S VISUAL CORTEX

By D. H. HUBEL axp T. N. WIESEL

Light bar
stimulus

projected
on screen

view-tuned cells

gﬁ “complex composite" cells (C2)
/' |

! :
.o @ /// "composite feature" cells (S2)

@ ® @ *ee complex cells (C1)
@ @ OIS @@ (D ® @ @ @ S oo simple cells (S1)

Recording from
visual cortex

= weighted sum
— MAX

Pictures from Neuroscience, Purves et al., and Are Cortical Models Really Bound by the “Binding Problem”?, Riesenhuber and Poggio
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Why neural network?

Development of the Brain depends on
the Visual Environment

Corin BLAKEMORE
GraHAME F. CooPER

The Physiological Laboratory,
University of Cambridge,
Cambridge CB2 3EG,.

Received July 17, 1970,

/6



Why neural network?

A PROBABILISTIC MODEL FOR

INFORMATION STORAGE AND ORGANIZATION

THE PERCEPTRON

IN THE BRAIN'!

F. ROSENBLATT
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DEEP NEURAL NETWORK (DNN)

Low-level features Mid-evel features Hih-level features
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What is a representation?

X —— 7 — sy

data representation task
y = label, segmentation, reconstruction, ...
[

Nnuisances

Sufficient I(z; v) = 1(x; V)
Nuisance invariance nity=1In z=0
Minimal [(X; z) = minimal

Compositional Minimal component correlation?

A. and Soatto, Information Dropout: finding optimal representation through noisy computation, PAMI 2017 80



A Variational Principle for representation learning:
The Information Bottleneck principle

A minimal sufficient representation is the solution to:

minimize, 1y 1(X; 2)
s.t. H(y|z) = H(y|x)

Information Bottleneck Lagrangian: (Tishby et al., 1999)

L =H,q(y|z) +B1(z; x)

cross-entropy regularizer

81



Invariant it and only if minimal

Definition. A representation z is minimal for the task y if it minimizes I(z; x) among the
sufficient representations.

Theorem (A., Soatto) (informal) Let z be a sufficient representation and n a nuisance. Then,

[(z;n) < I(z;x) —I(x;y)

invariance  minimality

Moreover, there exists a nuisance n for which equality holds.

Corollary: A representation is maximally invariant if and only if it is minimal

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
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Compression without loss of *useful® information

Task Y = Is this the picture of a dog?

Less information /(z; x) in the representation

The task information /(z; y) remains about the same

The IB Lagrangian £ (0) = Hpe(y | 7) + ,Blpe(z;x) allows to interpolate between all the various

representations by varying p.

Image source https://en.wikipedia.org/wiki/File:Terrier_mixed-breed_dog.jpg 83



Compression in practice

Reduce the dimension

max-pooling, dimensionality reduction

Increase dimension +
Inject noise in the map

X1 /Z.\
\\>//
X2 ~ 52

5 5
X Z

dropout, batch-normalization

84



MaxPooling: Reducing information by reducing the dimension

Downsample the spatial dimension by selecting only local maxima of the activations:

12 | 20 | 30 | O

8 112 2 | 0 | 22 Max-Pool |20 |30
>
34 | 70 | 37 | 4 112 | 37

112 1100 | 25 | 12

Nowadays replaced by more expensive (but better performing) strided convolutions.

224 x 224 x3 224 x 224 x 64

112 x 128

TxTx512

-1' -‘F' 2
14 x 14 x 512 _ P o
) —, l 1 1x1x4096 1x1Xx l{]()[)

@ convolution+ReLU
[" 1 max pooling
fully connected+RelLU

| softmax

Image source https://neurohive.io/en/popular-networks/vgg16/ 85



Dropout: Reducing information by adding noise

Introduce binary multiplicative noise in the activations:

1
7z = —7 © €, where ¢ ~ Bernoulli(p)

P
In practice disables random units during training:

(a) Standard Neural Net (b) After applying dropout.

Nowadays, batch normalization is used instead of dropout as it has a similar effect and
performs much better.
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Notebook
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Back to the general Information Bottleneck

A minimal sufficient (and hence invariant) representation is the solution to:

Mminimizep ;15 1(x; 2)
s.t. H(y|lz) = H(y|x)

Information Bottleneck Lagrangian: (Tishby et al., 1999)

L =Hp,q(ylz) +B1(z; x)

Ccross-entropy regularizer

88



Blahut-Arimoto algorithm

In general, how do we minimize the IB Lagrangian £ (0) = Hpe(y 1 Z) + ,Blpe(z;x) to find an

optimal representation? We can use the following iterative algorithm:

Encoder p(z|x)

pt(z)
Z.0.0) exp(—1/8d(x, z))

Pr+1(2) = Z p(x)pe(z|x)

pe(z|x) <

pria(ylz) « 3 p(yIx)pe(x|2)

Exploits the fact that the set of probability distributions is convex.

But what happens if p(z|x) is too large, or parametrized in a non-convex way?

Tishby et al,, The information bottleneck method, 2000
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Minimizing the information by adding noise

How do we minimize Z(0) when py(z|x) is complex, e.g., computed by a DNN)?

Problem: the marginal distribution
lex to compute

Z6) = H,(y|0) +pl(x;z) =0T
=H, (y|x) + SE,| KL(py(z|x) |l py(2)) |

Lemma. I(z;x) < E,[KL(p(z|x) || ¢(z))| for any q(z) and is equal if and only if g(z) = p(2).

Using this:

Z©) <H,(y|x) + BE,| KL(py(z|0)llg,()) |

=: Z£(0, @)
Hence: min £ (0) = min Z£(0, ¢), and the latter minimization problem is simpler.
0 0, ¢

A. and Soatto, Information Dropout: finding optimal representations by adding noise, 2016 90



Example of implementation

Learning a minimal sufficient representation z of the data.

2, ¢) =H, (y|x) + PE,| KL(py(z|0llg,2)) |

Algorithm;
1. Choose a simple family of distributions p,(z|x) and q¢(z), for example:

Pe(z|x) ~ N(fy(x), 2) and g,4(z) ~ N(py, Zp)
Where f,(x) can be implemented by a DNN.
2. Train the network to minimize:

Z0,¢) = H, (y1x) + BE, | KL(N(uy(x), Zy(0)) | N(pty Z)) |
= H, (v|%) + BE[(f(x) = up) 2 (f(x) — py) + e(Z/Z ) — I) — log T/X ]

3. This can be seen equivalently as minimizing the loss with a noisy representation z = f(z) + €,

e ~ N(O, 2) instead of with a deterministic representation as usual.

91



Example: Variational Auto-Encoders

Task: Train a network to encode and decode the input, while minimizing both the

reconstruction error and the information /(z; x) used to encode it.

Input

@

\

Encoder
q4(2]|x)

/

/

Decoder
po(Xx|z)

\

Representation z

Minimize I(z; x)

Reconstruction

X

Minimize H(x | X)
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Example: Variational Auto-Encoders

Each component of the learned representation corresponds to a different semantic factor.

Components of the representation z

" q¢(2]x)

¥ X ® W W W e g
b 4 4 o 4 d

y o oo®m ®m omm

Image seed

Higgins et al., B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017 | o
Burgess et al., Understanding Disentangling in beta-VAE” 2017 Pictures courtesy of Higgins et al., Burgess et al.93



Learning disentangled representations

Start with very high 8 and slowly decrease during training.

Beginning: Very strict bottleneck, only encode most important factor
End: Very large bottleneck, encode all remaining factors

Components of the representation z

b 6
- Shape
> > — Scale
, | - Orientation ke,
4 4 O
: 3
3 ] ==Yy
""" Mean O
2 2 O)
b ®©
n n g ereree
100000 200000 300000 -600 -500 -400 -300 -200 -100 O
Training iterations Log likelihood

Think of it as a non-linear PCA, where training time disentangles the factors.

Higgins et al., B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017
Burgess et al., Understanding Disentangling in beta-VAE” 2017
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The catch

What if we just represent an image by its index in the training set (or by a unique hash)?

< y
24,576 bits 16 bits 4 bits
—  0000000000000000 > 0100
—  0000000000000001 > 0001
—  (0000000000000010 > 0010
—  0000000000000011 g 0101

It Is a sufficient representation and it is close to minimal.



This Information Bottleneck is wishful thinking

The IB Is a statement of desire for future data we do not have:

min L = H, 4(v|z) + B 1(z; x)

q(z|x)

What we have iIs the data collected in the past.

What is the best way to use the past data in view of future tasks?
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Training Set
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Can we separate structural information from noise?

Examples:

Xx=1101011111111011111101101110...
xi ~ Bernoulli(p=0.8), has entropy H(x) = N log(p). But the only “structural information” is
that p = 0.8, the rest is randomness.

The fact that is a rainy outdoor scene is structural information of the image, the
positions of the rain drops is pure randomness.

Picture from https://buffalonews.com/2019/06/16/rain-will-return-this-week-after-record-setting-saturday/ 99



https://buffalonews.com/2019/06/16/rain-will-return-this-week-after-record-setting-saturday/

Kolmogorov’'s complexity

The Kolmogorov complexity of a string is the length of the shortest
program that can output that string. (Defined up to an O(7) factor)

Examples:
A random sequence of length n of 0 and 1°s;
x =100011101170...17007010011010 K(x) =n + O(1)

A repeating pattern of 0 and 1’s has:
x =10701070101....701070107010 K(x) = O(1)

The digits of mt are statistically random, but have low complexity:
X =3.141592653589793238462643... K(x) = O(1)

100



The Kolmogorov Structure Function

Define the Kolmogorov Structure Function as:

S5.(1) = min —log p(x)
K(p)<t

T

Cost of encoding the  Cost of encoding the
model data using the model

h, (o)

A Minimal sufficient statistic

sufficiency

Extreme cases: e

p(z) = Unif(z) = K(p)=1and logp(x) = Nlogc
p(z) =0(z) = K(p)=K(x)and logp(x)=0

bump

|
|
Kolmogorov's Structure Functions and Model Selection, Vereshchagin and Vitanyi, 2002 m(x)  K(K(x))
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The Kolmogorov Structure of a Task

How can we define the structure of a task”
Let I = {(x, yl-)}f.\; , be a dataset. For any py(y | x) define L(2; pg) = Ziil Po(y: | x,).
The structure function of the dataset & is defined by:

So(t) = min L(Z; py)
K(pg)<t

Kolmogorov's Structure Functions and Model Selection, Vereshchagin and Vitanyi, 2002
Information Complexity of Tasks, their Structure and their Distance, Achille et al., 2018 102



The Kolmogorov Structure of a Task

So(t) = min L(Z; py)
K(pg)<t

Increasing the complexity of the model leads
to big gains in accuracy: We are learning the structure of the problem.

After learning all the structure, we can only
~memorize: inefficient asymptotic phase.
) Tangent = 1 in the asymptote: Need to store
bit in the model to decrease the loss by 1 bit

Training Loss

..
~
~
~
~
~
~
~
~
L]
~
~
~
~
-~
~
~
~
~
-~
..
~

Kolmogorov complexity of model

Kolmogorov's Structure Functions and Model Selection, Vereshchagin and Vitanyi, 2002
Information Complexity of Tasks, their Structure and their Distance, Achille et al., 2018 103



The Information in the Weights

How do we measure the complexity of a DNN?

Assume some prior distribution p(w) over the weights. Codifying a particular set of weights
as real numbers requires infinite information.

p(w)

ldea: Add noise to the weights to encode with a finite amount of information (Hinton, 1993)

|encoding | = KL(g(w[2) || p(w))

p(w)

Hinton, Van Camp, 1993
104



The Information in the Weights

In our setting, consider a noisy weight distribution g(w | D). Measure the amount of noise by
its divergence KL(gw | D) || p(w) ) from a fixed prior p(w).

Expected loss over the
~ noisy weights

S(t) = min DY Lp(w
() = e Z~atwD) (LD ()]

Or, equivalently the Lagrangian:

Information in the Weights

L =Ey~qwp)lLo(w)] +BKL(g(w|D) || p(w))

optimal noise

For a given B we call Information in the Weights the value of the KL divergence of the
optimal solution.

A., Paolini, Soatto, Information Complexity of Learning Tasks, 2019
A., and Soatto, Where is the Information in a DNN?, 2019 105



Example: Measuring Information by Adding Noise

ldea: We can estimate the amount of information contained in the weights by corrupting
them with noise and measuring the decrease in performance.

Prediction and Entropy of Printed English
By C. E. SHANNON

(Manuscript Received Sept. 15, 1¢50)

Example: Shannon (1951) estimates the information content of the English language by
corrupting random letters and measuring the reconstruction error of English speakers.

“Thif is a vevy moisy party” = “This Is a very noisy party”

Shannon, Prediction and Entropy of Printed English, Bell System Technical Journal, 1951 106



Let’s rewrite this using Information Theory

We used an upperbound, what is the best we value it can assume?

ZLM) =E,,  onolH, (D |wW)]+ AKL(gw|[2D)|p(w)).

Recall that:

[(w; D) < EglKL(g(w|2)[[p(w))],

which is obtained when p(w) = g(w|D). Hence, on expectation over the datasets,
the best function loss function to use to recover the task structure is:

L(M) = EL[H@ | w)] +

|IB Lagrangian for the weights
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The Information in a Deep Neural Network

L(w) = Hpq(Dlw) +BKL(g(w|D) || p(w))

output of training fixed prior

. Fisher Information: p(w) = Gaussian prior, assume the loss is locally quadratic

| WH2 > F = curvature of loss
Flog |2A“NF + ]

landscape

KL =

i Shannon Information: adapted pripr ~g(v) := Ep[q(w|D)] “p[KL] = I(w: D)

d
)
7
O
—

Weight configuration

A. et al., The Information Complexity of Learning Tasks, their Structure and their Distance, ArXiv 2019
Li et al., Visualizing the Loss Landscape of Neural Nets, ICLR 2018, Hochreiter and Schmidhuber, Flat Minima. Neural Computation1997
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https://arxiv.org/abs/1904.03292

The PAC-Bayes generalization bound

PAC-Bayes bound on the test error: (Catoni, 2007; McAllester 2013)

Liost < —— [Ew[Lo(w)] + BKL(G(WID) || p(w))

=7 L
Moreover, the sharpest bound is obtained when E[KL] = /(w; D).

i What matters for generalization is not the number of weights, '
| but the information they contain. |

This gives non-vacuous generalization bounds.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
Dziugaite and Roy, Computing non-vacuous generalization bounds for deep neural networks, UAI 2017 109



Bias-variance tradeoff

Information is a better measure of complexity than number of parameters

10.0 e Error
Total error . 9.5
Variance 5
. 2 9.0
C:) Obptimal model 7
— —
LLI

85 Optimal DNN

8.0

104 10° 106
[(w: D)

Model complexity

Information complexity

Parametrizing the complexity with information in the weights, we recover bias-variance
trade-off trend.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
Arora et al., Stronger generalization bounds for deep nets via a compression approach, ICML 2018



Relation between Fisher and Shannon

SGD minimizes the Fisher Information of the Weights. However, generalization is
governed by the Shannon Information.

Proposition. Assuming the dataset is parametrized in a differentiable way, we have:

(271' e) K ) 1
F(w) Vpw"]/.

Where w* = w*(D) is the result of running SGD on dataset D and F(w) is the Fisher
Information Matrix in w.

A. and Soatto, Where is the Information in a Deep Network?, 2018 111



Stability of SGD

] T K ]
D)~ HD) ~ Eplog (1)

AN

Curvature at the final
point

Dependency of final training
point on the dataset

Imagine training a network on a dataset D and on a slightly perturbed dataset D’

z
Wo /@,_> WT

WT
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Phase transition

2.0 2.5 3.0 3.5 40 45 2.0 2.5 3.0 3.5 4.0 4.5
Dataset Size ~ logg N

% Random labels Real labels 100%

= >98

Rl 5 < 1 = overfitting p < 1 = overfitting I

) —-5.0 —] 80%

o —4.5 9 —

'E = S 60%

Q. c

S -30 c —e— AlI-CNN

g o5 § 20% . —®— ResNet

'..(:U 50 y < —&— Small AlexNet
c | g > 1 = underfitting ] 0% ,

E —-1.5 <12 10—2 101 102
I=

Phase transition

Using the regularized loss:
L(w) = Hpq(D|w) + B8 KL(a(w|D)|[p(w))
For random labels there is a transition between over- and under-fitting at 8 = 7.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018 113



Networks can overfit, but they have to pay a price

+3.0
+2.5
+2.0
+1.5
+1.0
+0.5
+0.0

Information in weights
(nats/sample)

0.0 0.2 0.4 06 0.8 1.0
Percentage of corrupted labels

Information in weights as a function of the number of corrupted labels.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018 114



Two Bottlenecks

Activations |IB
Invariance

Welights IB
Generalization

X — Z

data

q(z|x)

dataset

activations label

min L= H, 4(y|z) +BI/(z; x)

W
weights real distribution

mmi/n L=H,q (v|z)+BI(D;w)

o) |
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The Emergence Bound

Let z = fw(X) be a layer of a network, and let z, be the representation obtained by
adding noise to the weigths. We define the effective information as le (x; z) = I(x; zn)

Let z = fw(X) be a layer of a network. To a first order approximation, the
iInformation in the activations is given by:

o (2me)X
e 2) % HO) =109 (16— Fy T 9 001)

where F(w) is the Fisher Infomation of the weights, Jr is the jacobian of fw w.r.t. w.

Take-away: Reducing information in the weights reduces information in the
activations, hence it promotes invariant classifiers.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
A. and Soatto, Where is the Information in a Deep Network?, 2019 116



Explanation

Jacobian of activations wrt inputs

(2me)k )
Vifw(x)t J2 F(w) Jr Vifu (X))

™~

Curvature of loss function

La(x: 2) &~ H(x) — log (

Jacobian of representation wrt to
weights
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Compression of the weights biases toward invariant and disentangled representations.

airplane
automobile
bird

cat

deer

dog

frog

(car, horse, deer, ...)

horse
ship
truck

OOOOOOO@O0]

FUTURE
Weights Activations
Generalization (PAC-Bayes) Invariance (Emergence)

Minimality (Shannon) Minimality (Fisher)



Test Image
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Representation
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What is the distance between two tasks?

= 2

CIFAR-1
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A Topology on the Space of Tasks

Distance between tasks:

A(D, = D,) =1(D,D;w) —1(D;w)

Complexity of Complexity of
learning together learning one

That is, how much more structure do we need to learn?

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019 121


https://arxiv.org/abs/1904.03292

A Topology on the Space of Tasks

cifar10 ™ 0.29 0.31 0.28

mnist
—— Difficult task to easy task

fashion 0} 25 (== O 12 0.06 -0.03.
ifashion . : : 0.07 0.02 0.01

letters : : : : D 0.41 0.32 0.33

L ol
cifarl00 : : : : 0.42 -~ 0.12 0.07
Easy task to difficult task > |

CIVEIE 0.41 057 055 0.54 030 0. Similar tasks cluster together
artificial

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019 122


https://arxiv.org/abs/1904.03292

TASK2VEC: Embedding tasks in a metric space

dea: Represent each tasks in a metric space using its Fisher Information Matrix diagonal.

A. et al., TASK2VEC:

® Actinopterygii (n) Insecta (n) ® Reptilia (n) Neckline (m)
Amphibia (n) ® Mammalia (n) Category (m) ® Pants (m)
Arachnida (n) Mollusca (n) ® Color(m) Pattern (m)

® Aves(n) ® Plantae (n) Gender (m) Shoes (m)

® Fungi(n) ® Protozoa (n) ® Material (m)

Laurales
Liliales
Pinales
Rosales

Falconiformes
Passeriformes
Corvidae

Formal dresses

Wedding dresses

°
Prom dresses @ M "o

() ® ()
oo 9 L o

o @
°
e _o 0%° *

i ‘Shoelaces ° “ ® 0q% o
! Winter boots \&'5‘. [ :.‘03 b 4 3

| e ¢

_,; o

\ Sweatpants Denim
Yoga pants

Ripped ,
| Jeans S

Recovers a meaningful topology
on hundred of tasks

Task embedding for meta-learning, 2019

Recovers species taxonomy on
INaturalist
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ARCAMA

i Top 5 prediction:
television room
' home theater
hotel room
living room

bedroom
tcene Cor1ificstion

Top 5 prediction:
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--------------
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— Edge Texture
Rgb

Normal
Keypoints2D
Edge Occlusion
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- Class Object
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Proposing an optimal expert for the task

INat+CUB error distribution and expert selection

X Selected expert

80% A ImageNet expert
(o)

60%

40%

Test Error

20%

0%

¢ L Z o

D 2 P D D D D P D DALY R D O &
PRI IR T ITIT T IR0 ERR L N\
S &o&f &06? &O@ & &O@ NIENEEOIRGESER S SINEOENICEN IR

Q\‘Q@ AN RN
TN O O8O
K N PO @S <

N &S WX O 0L T
¥ 0 & E At C RO S

Q)\(Joo@ @Q ﬁoo% Q @\Q)\ RO S \@\0\5(, (}Q\\) <J~$ NRS
S & VOLRN L L P TR © VN O & VNG
N oS NS N

KON NS

Allows to select the best expert to solve a task and substantially reduce error and
training time.
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A snag: Critical Periods

Two almost identical tasks, yet it is not possible to fine-tune from one to the
other.

Excursus: Critical Periods for learning

Task reachability. Complexity is physical.
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Critical periods

Critical periods: A time-period in early development where sensory deficits can
permanently impair the acquisition of a skill

monocular deprivation, cataracts, imprinting, language acquisition

Deficit | Normal training
® ®
e
@ 9 0
,, o X

\ 4

Kitten does not recover
vision in covered eye Hubel and Wiesel

o) 100 200
Age (days)

Image from Cnops et al., 2008 127



Critical Learning Periods in Deep Networks

L s =

airplane
/ O
X o .4 \\\ .
NI 77w NS QNS QAN ‘v @ ouronobile
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O @i O e Q et
% XK PR XWX XE
R A N T~ S X X8 O deer
BOR Sl A meastiss” =u O dog
RS A RIS SREST)
RN PIRIR ORI O frog
IR RN @I RN~
AN AP AN (| horse
2NN NN NN O ship
28N\ /4/,1'@ \\§\ SN |
NS = N = )

Deficit Normal training

0 N - g = 160+N
AN BendEl Bk

A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

Convolutional Network
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O 20 40 o0 80 100 120 140
Deficit removal (epoch)

0 100 200
Age (days)
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Sensitivity to deficits

Sensitivity of learning phase Sensitivity of learning phase (kitten)
L>)\ 1 10 [ W ®
T
S 0.8
< 2% >
7 E 0.6
= n
< 1% o 0.4
o N
p)
5 - 0.2
5 O% \-\---"l
o) 0.0
O 20 40 60 80 100 120 140
Window onset (epoch) Window onset (days)

N Deficit N + 40
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v 9 ‘-“’ -.\
B TIN &Lk
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High-level deficits do not have a critical period

Deficits that only change high-level statistics of the data do not show
a critical period.

—eo— Blur —e— Label perm.
—eo— Vertical flip —o— Noise

High-level deficits do not
exhibit a critical period

90.0%

87.95%

Test accuracy

85.0%

82.5%

Low-level deficit exhibit a
0 20 40 60 80 100 120 140 Cnhcal penOd

Deficit removal (epoch)

Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018
Picture from “The world is upside down” — The Innsbruck Goggle Experiments of Theodor Erismann and Ivo Kohler, Sachse et al. 130



Information is physical

How can the Fisher Information affect the ?

ldea: When using SGD, the Fisher Information
adds a drag term controlled by the batch size

K
\/eff — U | > ‘Og |F|
N~ N———
Real loss Drag term

1
Fisher Irfformation during training

800
600

400

SGD MINIMIZES THE FISHER INFORMATION OF THE WIGHTS
(INDUCTIVE BIAS OF SGD)

Fisher Information trace

N
o
o

1
0 50 100 150 200
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Path Integral Approximation and Task Reachability

wy
p(wy,trlwo,to) = e / e~ 2D

wo

Reachability Static part

Information Lagrangian

Achille, Mbeng, Soatto, The Dynamic Distance Between Tasks, NeurlPS Workshop 2018

SGD EFFECTIVELY MINIMIZES
THE IBL FOR THE WEIGHTS

ty 1

to

2

u(t)2+V(u(t))dtdu(t)

Dynamic part

Critical Periods
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