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Overview



What is a task
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Making a decision based on the data

Classification: Decide the class of an image (the prototypical supervised problem)

Survival: Decide the best actions to take to survive (Reinforcement Learning)

Reconstruction: Decide which information to store to reconstruct the data 
(generative models, unsupervised learning)



What is a representation
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Any function of the data which is useful for a task.

Neuronal activity

Image sources https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging#/media/File:Haxby2001.jpg, https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Brightness
A simple organism may only need to 
know the direction of the light source

Corners
Popular in Computer Vision before DNNs, 
central to visual inertial systems and AR.

Hidden Layer

https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging#/media/File:Haxby2001.jpg


Why studying representations in practice?
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Tail tasks

We can try to solve to the most common tasks, but what about the tails?

Are these two pictures 
of the same person?

Is this platypus healthy?

Idea: Provide the user with a powerful and flexible representation that allows them to easily 
solve their task.



Some questions in representation learning
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1. What is the best representation for a task?

2. Which tasks can we solve using a given representation?


The representation used by a health provider is probably not useful to a 
movie recommendation system.


3. Can we fine-tune a representation for a particular task?

4. Can we provide the user with error bounds? Privacy bounds?



But what is a good representation?
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Data Processing Inequality:

No function of the data (representation) can be better than the data themself for 
decision and control (task).

Three main ingredients of DNNs: Convolutions, ReLU, Max-Pool

Destroy information

However, most organisms and algorithms use complex representations that 
deeply alter the input. In Deep Learning we regularly torture the data to extract 
the results:



Questions
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Is the destruction of information necessary for learning?

Why some properties (invariance, hierarchical organization) emerge naturally in 
very different systems?



Why do we need to forget?
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Curse of dimensionality: In general, to approximate p(y | x) the number of samples 
should scale exponentially with the number of dimensions.

If x is a 256x256 image, this means we would need ~1028462 samples.

Then, how can we learn on natural images?
1. Nuisance invariance (reduce the dimension of the input)

2. Compositionally (reduce the dimension of the representation space)

3. Complexity prior on the solution (reduce the dimension of hypothesis space)

Let’s assume we want to learn a classifier p(y | x) given an input image x.



Nuisance invariance



Nuisance variability
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2.2. IMAGE FORMATION: THE IMAGE, THE SCENE, THE NUISANCE, AND THE LAMBERT-AMBIENT (LA) MODEL17

additive noise component n arising from the compound effects of un-modeled uncer-
tainty, although there is no added generality as n can be subsumed in the definition of
⌫. It is also useful to isolate the nuisances that act as a group on the scene, g, although
again we could lump them into the definition of ⌫. If we model explicitly the group
and the noise, we have a model of the form

I = h(g, ⇠, ⌫) + n (2.5)

This is the formal model that we will adopt throughout the manuscript (Figure 2.2).
In the next section we make this formal notation a bit more precise with a specific
instantiation, the so-called Ambient-Lambert model. More realistic instantiations are
described in Appendix B.1. The reader interested in generalizations of the simple sym-
metric binary decision case can consult any number of textbooks, for instance [53].

I = h(⇠, ⌫)

Ĩ = h(⇠, ⌫̃), ⌫̃ = illumination

⌫̃ = viewpoint

⌫̃ = visibility

Ĩ = h(⇠̃, ⌫̃), ⇠̃ 6= ⇠

Figure 2.2: The same scene ⇠ can yield many different images depending on particular
instantiations of the nuisance ⌫.

2.2 Image formation: The image, the scene, the nui-
sance, and the Lambert-Ambient (LA) Model

In this section, that can be skipped at first reading, we instantiate the formal notation
(2.5) for a simple model used throughout the manuscript. All the symbols used, to-
gether with their meaning, are summarized for later reference in Appendix C in the
order in which they appear. This section is necessary to make the formal notation
above meaningful. However, its content will actually not be used until Sections 3.1,
3.4, and will be exploited in full only starting in Section 4. Therefore, the reader can
skip this section at first reading, and come back to it, or to Appendix C, as needed. The
model we introduce in this section is the simplest instantiation of (2.5) that is mean-

Change of nuisance

Change of identity

Images from Steps Toward a Theory of Visual Information, S. Soatto, 2011



How to use nuisance variability
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Ĩ = h(⇠̃, ⌫̃), ⇠̃ 6= ⇠

Figure 2.2: The same scene ⇠ can yield many different images depending on particular
instantiations of the nuisance ⌫.

2.2 Image formation: The image, the scene, the nui-
sance, and the Lambert-Ambient (LA) Model

In this section, that can be skipped at first reading, we instantiate the formal notation
(2.5) for a simple model used throughout the manuscript. All the symbols used, to-
gether with their meaning, are summarized for later reference in Appendix C in the
order in which they appear. This section is necessary to make the formal notation
above meaningful. However, its content will actually not be used until Sections 3.1,
3.4, and will be exploited in full only starting in Section 4. Therefore, the reader can
skip this section at first reading, and come back to it, or to Appendix C, as needed. The
model we introduce in this section is the simplest instantiation of (2.5) that is mean-

2.2. IMAGE FORMATION: THE IMAGE, THE SCENE, THE NUISANCE, AND THE LAMBERT-AMBIENT (LA) MODEL17

additive noise component n arising from the compound effects of un-modeled uncer-
tainty, although there is no added generality as n can be subsumed in the definition of
⌫. It is also useful to isolate the nuisances that act as a group on the scene, g, although
again we could lump them into the definition of ⌫. If we model explicitly the group
and the noise, we have a model of the form

I = h(g, ⇠, ⌫) + n (2.5)

This is the formal model that we will adopt throughout the manuscript (Figure 2.2).
In the next section we make this formal notation a bit more precise with a specific
instantiation, the so-called Ambient-Lambert model. More realistic instantiations are
described in Appendix B.1. The reader interested in generalizations of the simple sym-
metric binary decision case can consult any number of textbooks, for instance [53].

I = h(⇠, ⌫)
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Ĩ = h(⇠̃, ⌫̃), ⇠̃ 6= ⇠

Figure 2.2: The same scene ⇠ can yield many different images depending on particular
instantiations of the nuisance ⌫.

2.2 Image formation: The image, the scene, the nui-
sance, and the Lambert-Ambient (LA) Model

In this section, that can be skipped at first reading, we instantiate the formal notation
(2.5) for a simple model used throughout the manuscript. All the symbols used, to-
gether with their meaning, are summarized for later reference in Appendix C in the
order in which they appear. This section is necessary to make the formal notation
above meaningful. However, its content will actually not be used until Sections 3.1,
3.4, and will be exploited in full only starting in Section 4. Therefore, the reader can
skip this section at first reading, and come back to it, or to Appendix C, as needed. The
model we introduce in this section is the simplest instantiation of (2.5) that is mean-

Office BH3531D

Team Disneyland 
Administration

2.2. IMAGE FORMATION: THE IMAGE, THE SCENE, THE NUISANCE, AND THE LAMBERT-AMBIENT (LA) MODEL17

additive noise component n arising from the compound effects of un-modeled uncer-
tainty, although there is no added generality as n can be subsumed in the definition of
⌫. It is also useful to isolate the nuisances that act as a group on the scene, g, although
again we could lump them into the definition of ⌫. If we model explicitly the group
and the noise, we have a model of the form

I = h(g, ⇠, ⌫) + n (2.5)

This is the formal model that we will adopt throughout the manuscript (Figure 2.2).
In the next section we make this formal notation a bit more precise with a specific
instantiation, the so-called Ambient-Lambert model. More realistic instantiations are
described in Appendix B.1. The reader interested in generalizations of the simple sym-
metric binary decision case can consult any number of textbooks, for instance [53].

I = h(⇠, ⌫)
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Ĩ = h(⇠̃, ⌫̃), ⇠̃ 6= ⇠

Figure 2.2: The same scene ⇠ can yield many different images depending on particular
instantiations of the nuisance ⌫.

2.2 Image formation: The image, the scene, the nui-
sance, and the Lambert-Ambient (LA) Model

In this section, that can be skipped at first reading, we instantiate the formal notation
(2.5) for a simple model used throughout the manuscript. All the symbols used, to-
gether with their meaning, are summarized for later reference in Appendix C in the
order in which they appear. This section is necessary to make the formal notation
above meaningful. However, its content will actually not be used until Sections 3.1,
3.4, and will be exploited in full only starting in Section 4. Therefore, the reader can
skip this section at first reading, and come back to it, or to Appendix C, as needed. The
model we introduce in this section is the simplest instantiation of (2.5) that is mean-

A good representation should collapse images differing only for nuisance variability.

Quotienting with respect to nuisances reduces the dimensionality of the space of 
images, and simplifies learning the successive parts of the pipeline.



Group nuisances
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Examples: Translations, rotations, change of scale/contrast, small diffeomorphisms

Well understood for translation and scale. The solution inspired and justifies the use 
of convolutions and max-pooling (next class).

f(x) = f(g ∘ x) g ∈ G, x ∈ Xfor all

Given a group G acting on the space of data X, we say that a representation f(x) is 
invariant to G if:

A representation is maximal invariant if all other invariant representations are a 
function of it.



Problems with group nuisances
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1. Rapidly becomes difficult for more complex groups

2. Groups acting on 3D objects do not act as groups on the image 

 
 
 

3. Not all nuisances are groups (e.g., occlusions)



More general nuisances
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Idea: A nuisance as everything that does not carry information about the task.

minf I( f(x); x) − λ I( f(x); task)

Introduce the Information Bottleneck Lagrangian:

Information the representation 
has about the task

Total information

where I(x; y) is the mutual information. The solution to the Lagrangian (for λ → +∞) is a 
maximally invariant representation for all nuisances.

We can thus rephrase the problem of nuisance invariance as a much simpler 
variational optimization problem.



Learning invariant representations
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Deeper layers filter increasingly more nuisances
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Only informative part of the image Other information is discarded

 A. and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)

We can approximatively optimize the variational objective using DNNs (Tuesday).



Compositional representations



Compositional representations
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Humans can easily solve task by combining concepts:

“Find a blue large cherry”

We can easily solve this task, even if we have never seen a blue cherry before.



Compositionally requires disentanglement
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To learn a good compositional representation, we first need to learn to decompose 
the image in reusable semantic factors:

Problem. But what are “semantic factors of variation”?

Color: Blue

Size: Large

Shape: Cherry

Factors of variation can be learnt in succession in a life-long learning setting and 
used in the future for one-shot or zero-shot learning.

This mitigates the curse of dimensionality: each factor is easy to learn, but combined 
they yield exponentially many objects.



Learning disentangled representations
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Higgins et al., β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017 
Burgess et al., Understanding Disentangling in beta-VAE” 2017 Pictures courtesy of Higgins et al., Burgess et al.

Possible answer through the Minimum Description Length principle:

Encoder

Input
Decoder

Azimuth

Elevation

Lighting

Latent traversal

x x̂

Representation z



Learning disentangled representations
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Components of the representation z 

Higgins et al., β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017

Burgess et al., Understanding Disentangling in beta-VAE” 2017
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Pictures courtesy of Higgins et al., Burgess et al.

Possible answer through the Minimum Description Length principle:

Figure 3: Utilisation of data generative factors as a function of coding capacity. Top left: the
average KL (in nats) per factor fi as the training progresses and the total information capacity C
of the latent bottleneck q(z|f) is increased. It can be seen that the early capacity is allocated to
positional latents only (x and y), followed by a scale latent, then shape and orientation latents. Top
right: same but plotted with respect to the reconstruction accuracy. Bottom: image samples and
their reconstructions throughout training as the total information capacity of z increases and the
different latents zi associated with their respective data generative factors become informative. It
can be seen that at 3.1 nats only location of the sprite is reconstructed. At 7.3 nats the scale is also
added reconstructed, then shape identity (15.4 nats) and finally rotation (23.8 nats), at which point
reconstruction quality is high.

to evaluate how much information the model would choose to retain about each factor in order to best
reconstruct the corresponding images given a total capacity constraint. In this model, the factors are
each independently scaled by a learnable parameter, and are subject to independently scaled additive
noise (also learned), similar to the reparameterised latent distribution in �-VAE. This enables us to
form a KL divergence of this factor distribution with a unit Gaussian prior. We trained the model to
reconstruct the images with samples from the factor distribution, but with a range of different target
encoding capacities by pressuring the KL divergence to be at a controllable value, C. The training
objective combined maximising the log likelihood and minimising the absolute deviation from C
(with a hyperparameter � controlling how heavily to penalise the deviation, see Sec. A.2):

L(✓,�;x(f), z, C) = Eq�(z|f)[log p✓(x|z)]� � |DKL

�
q�(z|f) k p(z)

�
� C| (7)

In practice, a single model was trained across of range of C’s by linearly increasing it from a low
value (0.5 nats) to a high value (25.0 nats) over the course of training (see top left panel in Fig. 3).
Consistent with the intuition outlined above, at very low capacities (C < 5 nats), the KLs for all the
factors except the X and Y position factors are zero, with C always shared equally among X and Y.
As expected, the model reconstructions in this range are blurry, only capturing the position of the
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Phase transitions during training



Information in the Weights and 
Dynamics of Learning



How, and when, do we learn good representations?

�23Image from Cnops et al., 2008
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Hubel and Wiesel © Harvard University



Critical Learning Periods in Deep Networks

�24A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

Deficit Normal training

0 160+NN



{ }, (car,  horse, deer, …)Training Set

Test Image

Weights Representation of 
past data



Information in Weights during training
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What should we expect from the information in the weights during training?

Maybe something like this?

Training Epoch
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Information in Weights during training

�27A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

Information extraction Information consolidation 

Not quite so.



Emergence of invariant and disentangled representations 
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Corollary (Theorem 1 + 2). DNNs are biased toward learning invariant and disentangled 
representations.

Theorem 1 (informal). Stochastic gradient descent biases the optimization process 
toward recovering low information solutions.

p(wf , tf |w0, t0) = e��L(w;D)

Z wf

w0

e�
1

2D

R tf
t0

1
2 u̇(t)

2+V (u(t))dtdu(t)
<latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU="></latexit><latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU="></latexit><latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU="></latexit><latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU="></latexit>

Theorem 2 (informal). In DNNs, low-information classifier have invariant and disentangled 
representations.

I2z(x ; z) ⇡ H(x)� log
⇣ (2⇡e)k

|rx fw (x)t Jtf F (w) Jf rx fw (x)|

⌘
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Minimality of activations

Fisher Information of Weights



Training data Testing

Weights

Invariant representation

{ }, (car,  horse, deer, …)

Compression of the weights biases toward invariant and disentangled representations.



Some consequences
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! < 1 ⇒ overfitting

! > 1 ⇒ underfitting

! < 1 ⇒ overfitting

! >> 1 ⇒ underfitting

fitting

Phase transitions for learning. 

Error bounds for DNN.

Li2bi 
1

1� 1
2�

⇥
Ew [LD(w)] + � KL(q(w |D) k p(w))

⇤

<latexit sha1_base64="/aqaMsH/4x8xVmEUFpE6Dmc4iNM="></latexit><latexit sha1_base64="/aqaMsH/4x8xVmEUFpE6Dmc4iNM="></latexit><latexit sha1_base64="/aqaMsH/4x8xVmEUFpE6Dmc4iNM="></latexit><latexit sha1_base64="/aqaMsH/4x8xVmEUFpE6Dmc4iNM="></latexit>



Distance between tasks
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MNIST
Fashion MNIST

SVHN

CIFAR-10
ImageNet

KITTI

Can we put a distance on the space of tasks?



A Topology on the Space of Tasks
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d($1 → $2) = I($1$2; w) − I($1; w)
Information in the 

joint datasets
Information in one of 

the two datasets

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019

Difficult task to easy task

Easy task to difficult task
Similar tasks cluster together

https://arxiv.org/abs/1904.03292


Lecture 1



Machine Learning
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In a typical supervised learning problem, we are given a training dataset � . 

We want to learn a model that predicts the right output �  for future inputs � .
$ = {(xi, yi)}N

i= 1
y x

We start from a parametric family of function, and look for a good set of parameters � , by 
minimizing a loss function � .

w
ℒ$(w)

Example (Polynomial curve fitting):

1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3 , from
Figure 1.4.

Picture from Christofer M. Bishop, Pattern Recognition and Machine Learning

�fw(x) = w0 + w1x + ⋯ + wMxM

ℒ$(w) = 1
2

N

∑
i= 1

(fw(xi) − yi)2
L2 reconstruction loss:

Family of functions: polynomials of degree M



Overfitting and regularization
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Pictures from Christofer M. Bishop, Pattern Recognition and Machine Learning

If the model is too flexible expressive, overfitting can happen (bias variance trade-off).

One way to reduce overfitting is to constrain the parameters.

ℒ$(w) = 1
2

N

∑
i= 1

(fw(xi) − yi)2 + λ
2 ∥w∥2

10 1. INTRODUCTION
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

Regularization term
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scale (and in the same units) as the target variable t. Graphs of the training and
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set error is a measure of how well we are doing in predicting the values of t for
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relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
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give small values for the test set error, and these also give reasonable representations
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Figure 1.4.

Increase degree M



How do we find the parameters: SGD
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The gradient can be computed as:

ℒ$(w) = 1
N

N

∑
i= 1

lw(xi, yi)

Algorithm (SGD): 

1. Sample an example �  from the dataset.

2. Compute the gradient of the per-sample loss �  

3. Update the network parameters �

(xi, yi)
g i := ∇wℓw(xi, yi)

w′� ← w − η g i

We want to find the parameters w that minimize the loss:

∇wℒ$(w) = ,xi,yi∼$[∇wℓw(xi, yi)] ⇒
the sample gradient


 � 

is an unbiased estimator of the real gradient

∇wℓw(xi, yi), xi, yi ∼ $



SGD as gradient descent with noisy dynamics

�38

∇wℓw(xi, yi) = ∇wL(w) + noise

(Robbins and Morro, 1951). In a strongly convex optimization problem (e.g., linear regression), 
SGD converges to the global minimum provided the learning rate is annealed over time.



The shape of the noise
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∇wℓw(xi, yi) = ∇wL(w) + noise

weights thereby causing the modes to spread into all dimensions of x. The FFT is dominated by
jittery high-frequency modes on the right with a slight increasing trend; this suggests the presence of
colored noise in SGD at high-frequencies.

The auto-correlation (AC) in Fig. 3b should be compared with the AC for Brownian motion which
decays to zero very quickly and stays within the red confidence bands (99%). Our iterates are
significantly correlated with each other even at very large lags. This further indicates that trajectories
of SGD do not perform Brownian motion.
Remark 18 (Gradient magnitude in deep networks is always large). Fig. 3c shows that the full-
gradient computed over the entire dataset (without burnin) does not decrease much with respect to
the number of epochs. While it is expected to have a non-zero gradient norm because SGD only
converges to a neighborhood of a critical point for non-zero learning rates, the magnitude of this
gradient norm is quite large. This magnitude drops only by about a factor of 3 over the next 105

epochs. The presence of a non-zero j(x) also explains this, it causes SGD to be away from critical
points, this phenomenon is made precise in Theorem 22. Let us note that a similar plot is also seen
in Shwartz-Ziv and Tishby (2017) for the per-layer gradient magnitude.

5 SGD FOR DEEP NETWORKS IS OUT-OF-EQUILIBRIUM

This section now gives an explicit formula for the potential F(x). We also discuss implications of
this for generalization in Section 5.3.

The fundamental difficulty in obtaining an explicit expression for F is that even if the diffusion matrix
D(x) is full-rank, there need not exist a function F(x) such that —F(x) = D�1(x) — f (x) at all x 2 W.
We therefore split the analysis into two cases:

(i) a local analysis near any critical point — f (x) = 0 where we linearize — f (x) = Fx and —F(x) =
Ux to compute U = G�1 F for some G, and

(ii) the general case where —F(x) cannot be written as a local rotation and scaling of — f (x).

Let us introduce these cases with an example from Noh and Lee (2015).

(a) l = 0 (b) l = 0.5 (c) l = 1.5

Figure 4: Gradient field for the dynamics in Example 19: line-width is proportional to the magnitude of
the gradient k— f (x)k, red dots denote the most likely locations of the steady-state e�F while the potential
F is plotted as a contour map. The critical points of f (x) and F(x) are the same in Fig. 4a, namely (±1,0),
because the force j(x) = 0. For l = 0.5 in Fig. 4b, locations where — f (x) = 0 have shifted slightly as predicted
by Theorem 22. The force field also has a distinctive rotation component, see Remark 21. In Fig. 4c with a
large k j(x)k, SGD converges to limit cycles around the saddle point at the origin. This is highly surprising and
demonstrates that the solutions obtained by SGD may be very different from local minima.

Example 19 (Double-well potential with limit cycles). Define

F(x) =
(x2

1 �1)2

4
+

x2
2

2
.

Instead of constructing a diffusion matrix D(x), we will directly construct different gradients — f (x)
that lead to the same potential F; these are equivalent but the later is much easier. The dynamics is

8

Chaudhari et al., Stochastic gradient descent performs vatriational inference, converges to limit cycles, 2018

The noise term is non-gaussian and non-isotropic.

Visualizing the Loss Landscape of Neural Nets
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Not an essential difference for a convex problem But really changes the dynamics in deep learning!
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Classic Machine Learning: minimize some loss function on the training data. Hope it 
generalizes to the test set

Li et al., Visualizing the Loss Landscape of Neural Nets,  2018

Deep Learning: We don’t want a global minimum, local minima are better. We don’t care 
about convergence speed (or about convergence at all). Over-parametrization makes things 
work better. Regularization is only needed at the beginning of training (!)



Structure of the data

(natural images)

Parametrization of the model

(Deep Networks)

Optimization algorithm

(SGD)

Today and tomorrow

Wednesday



Machine learning and information

�42

Machine learning at its core is about extracting useful task information from the data.


How do we define information?

“Frequently the messages have meaning; that is they refer to or are 
correlated according to some system with certain physical or 
conceptual entities. These semantic aspects of communication are 
irrelevant to the engineering problem.”



Entropy

�43

Shannon coding theorem. The expected minimum coding length (in bits) to encode a sample 
of the distribution without loss is equal to the entropy of the distribution.


That is, the entropy measures the “information content” of random variable.

Hp(x) = ,x∼p(x)[− log p(x)]

Low entropy

2 bits

Higher entropy

2.58 bits



Kullback-Leibler divergence
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By Jensen Inequality, the KL-divergence is always positive and it is zero if and only if p(x) = 
q(x).

KL(p(x) ∥ q(x)) = ,x∼p(x)[ − log p(x)
q(x) ]

Cross-Entropy:   �Hq,p(x) = ,x∼p(x)[− log q(x)]

Hq,p(x) = Hp(x) + KL(p(x) ∥ q(y))

Corollary. The cross-entropy is minimized if and only if q(x) = p(x)

Entropy is a particular case of the KL divergence (when q(x) is discrete and uniform).



Conditional Entropy and Mutual Information
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H(y |x) = ,x,y∼p(y,x)[− log p(y |x)]

Conditional Entropy: How much information remains in y after having observed x

Mutual Information: How much information remains in y after having observed x

I(x; y) = H(y) − H(y |x)

I(x; y) = ,x∼p(x)[KL(p(y |x) ∥ p(y))]

The mutual information can also be interpreted as the expected divergence between the 
distribution of a random variable before and after an observation.



Our prototype problem: Image classification
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Suppose that our task is to classify images into a finite number of classes:

�  where each �  is an image, and each �  is a label.$ = {(xi, yi)}N
i= 1 xi yi

We want to learn a model �  that predicts the right class of future images.pw(y |x)
Example. A simple linear prediction model is � , where �pW(y |x) = σ(Wx) σ = (1 + e− x)− 1



Cross-entropy loss
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We want to maximize the amount of information about the task. Recall that

We introduce the empirical cross-entropy loss:

ℒ(w) = Hpw
(y |x) = 1

N

N

∑
i= 1

− log pw(yi |xi)

Recall that the cross-entropy is minimized when �  is equal to the ground-truth data 
distribution.


Alternatively can be seen as computing the MLE of w.

pw(y |x)

I(x; y) = H(y) − Hp(y |x) = max
w

H(y) − Hpw,p(y |x)



Notebook
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Deep Neural Netowrk

What is missing here?

A fully connected network can easily bring the train error to zero, but still fails to learn.

Fully connected network on CIFAR-10



What is a nuisance? It depends on the task!
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Having different clothes/hairstyle/pose is a nuisance for the task of recognizing the person.

But what if our task is to tag the clothing style in the image?

Pictures of Ian McKellen from https://en.wikipedia.org/wiki/Ian_McKellen https://en.wikipedia.org/wiki/Gandalf

?

?

https://en.wikipedia.org/wiki/Ian_McKellen
https://en.wikipedia.org/wiki/Gandalf


Nuisance for a task
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Definition (Nuisance) Assume wlog that the input data can be written as x = R(o, n) for a 
function R(o, n) and o, n ~ p(o, n). We say that n is a nuisance factor for the task y if:

p(y |R(o , n )) = p(y |R(o , n ′�))
for all o ∈ O, n ∈ N.

Equivalently: A random variable n is a nuisance for y if I(y; n) = 0.

Problem: How do we find a representation of x which is invariant to nuisances?

Definition (Invariance) A representation z = !(x) is invariant to a nuisance n if I(z; n) = 0.



Nuisance variability
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2.2. IMAGE FORMATION: THE IMAGE, THE SCENE, THE NUISANCE, AND THE LAMBERT-AMBIENT (LA) MODEL17

additive noise component n arising from the compound effects of un-modeled uncer-
tainty, although there is no added generality as n can be subsumed in the definition of
⌫. It is also useful to isolate the nuisances that act as a group on the scene, g, although
again we could lump them into the definition of ⌫. If we model explicitly the group
and the noise, we have a model of the form

I = h(g, ⇠, ⌫) + n (2.5)

This is the formal model that we will adopt throughout the manuscript (Figure 2.2).
In the next section we make this formal notation a bit more precise with a specific
instantiation, the so-called Ambient-Lambert model. More realistic instantiations are
described in Appendix B.1. The reader interested in generalizations of the simple sym-
metric binary decision case can consult any number of textbooks, for instance [53].

I = h(⇠, ⌫)

Ĩ = h(⇠, ⌫̃), ⌫̃ = illumination

⌫̃ = viewpoint

⌫̃ = visibility

Ĩ = h(⇠̃, ⌫̃), ⇠̃ 6= ⇠

Figure 2.2: The same scene ⇠ can yield many different images depending on particular
instantiations of the nuisance ⌫.

2.2 Image formation: The image, the scene, the nui-
sance, and the Lambert-Ambient (LA) Model

In this section, that can be skipped at first reading, we instantiate the formal notation
(2.5) for a simple model used throughout the manuscript. All the symbols used, to-
gether with their meaning, are summarized for later reference in Appendix C in the
order in which they appear. This section is necessary to make the formal notation
above meaningful. However, its content will actually not be used until Sections 3.1,
3.4, and will be exploited in full only starting in Section 4. Therefore, the reader can
skip this section at first reading, and come back to it, or to Appendix C, as needed. The
model we introduce in this section is the simplest instantiation of (2.5) that is mean-

Change of nuisance

Change of identity

Images from Steps Toward a Theory of Visual Information, S. Soatto, 2011



Group nuisances
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Assume that a nuisance g ∈ G acts on the data x though a group action:

x = R(o , g ) = g ⋅ R(o , e) = g ⋅ x′�

Translation, rotation, scale

Projective transform

Change of illumination and 
contrast

Examples:

Pictures from https://commons.wikimedia.org/wiki/File:Widok_na_Perast_z_zachodu_01.JPG, https://blogs.dropbox.com/tech/2016/08/fast-document-rectification-and-enhancement/ 

Aff (ℝ2) = GL(2) ⋉ ℝ2

PGL(ℝ2) × Diff (ℝ)
Change of pixel positions

Change of pixel values 
(contrast)



Local group-invariant descriptor
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Reference frame need to be unique and robust.

Due to occlusions, we can only trust local features and need redundancy

Need to be robust to all geometric transformations and small deformations.

Need to be robust to changes of illuminations, shadows, …

Occlusions Changes in appearance



SIFT: Finding the scale
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Find “interesting points” (i.e., local maxima and minima) at all scales.

Done by constructing the scale space of the image and finding the first scale at 
which a local maximum (minimum) stops being a local maximum (minimum).



Harris corner detector
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Points along edges are not useful keypoints, as they cannot be localized exactly.

Idea: Compute the Hessian at each interesting point. Consider only the points 
that have large eigenvalues of the same magnitude.

Image from https://docs.opencv.org/3.4.2/dc/d0d/tutorial_py_features_harris.html



Find corner orientation
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Decide the orientation of the corner by plotting the histogram of the gradients 
orientation and find the most frequent orientation.

Image from http://aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoint-orientation/

If multiple orientations are very frequent (> 0.8 * max), select all.



SIFT: Scale-Invariant Feature Transform 
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Gradient orientation is the only invariant to contrast changes.

Image from http://aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoint-orientation/

Idea: Describe local patch around corner using orientations of the gradients.
Bin together gradients in a patch for 

robustness to small deformations



The state of Computer Vision, circa 2009

�58Image from http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html



Feature matching in Visual-Inertial SLAM system

�59Demo video from https://sites.google.com/site/ktsotsos/visual-inertial-sensor-fusion

https://sites.google.com/site/ktsotsos/visual-inertial-sensor-fusion


Computer Vision now
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How do we learn the complex variability of natural objects?



Lecture 2: Learning optimal 
representations



What is a representation?
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Minimal I(x; z) = minimal

Nuisance invariance n ⫫ y ⇒ I(n; z) = 0

Sufficient I(z; y) = I(x; y)

Compositional Minimal component correlation?

data representation task

nuisances

x z y

n
y = label, segmentation, reconstruction, …

A. and Soatto, Information Dropout: finding optimal representation through noisy computation, PAMI 2017



The work-horse of representation learning:

G-equivariant operators

�63
How do we construct a general group invariant representation?

�f(x) = “dog” �f(g ⋅ x) = “dog” ∀g ∈ Aff (ℝ2)

Let a group G act on the data: We don’t want to learn the same thing over and over again.



G-invariance and G-equivariance
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G-equivariant if � .f(g ⋅ x) = g ⋅ f(x)

G-invariant if � .f(g ⋅ x) = f(x)

Let G act on two sets X and Y. A function �  is:f : X → Y

The composition of equivariant functions is equivariant.

Any equivariant function f can easily be made invariant, for example using
� .

We can write an invariant function as a composition of simpler equivariant functions.

̂f(x) = max g ⋅ f(x)



Linear G-equivariant operators
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Proposition (Kondor et al., 2018) Let G be a compact group, and let � . 
Then �  is a linear G-equivariant operator if and only if  �   for 
some kernel � .*

L(G) = {f : G → ℝ}
Φ : L(G) → L(G) Φ( f ) = f ⋆G g

k(x) : G → ℝ

G-convolution: Let G be a group with an Haar measure, and let � . We define the 
G-convolution:

f, k : G → ℝ

f ⋆G k (x) = ∫ f(xg − 1)k(g )dμ(g )

Example: Let �  be the translation group on a lattice. We can think of an image as a 
function  � , so that � . The only translation equivariant operators are � -
convolutions.

G = ℤ2

f : ℤ2 → ℝ f ∈ L(G) ℤ2

Kondor and Trivedi, On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups, 2018 
* The result extends to L(X) where X is any set on which G acts transitively.

f ⋆ k (x) = ∑t∈ ℤ2 f(x − t) k(t)



Convolutional Neural Networks
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We want to be equivariant/invariant to translations in the image plane

f(x) ≃σ ∘ Φw0
(x)

For the group �  of planar translations of a discretized image:ℤ × ℤ

Picture from http://diplabs.blogspot.com/2012/04/template-matching-using-normalised.html

http://diplabs.blogspot.com/2012/04/template-matching-using-normalised.html


Linear is not enough
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Deep Convolutional Neural Networks
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f(x) ≃σ ∘ ΦwL
∘ σ ∘ ΦwL− 1

∘ … ∘ σ ∘ Φw0
(x)

Proposition. We can approximate any G-equivariant representation by alternating linear G-
equivariant operations (convolutions) and point-wise non-linearities !.

We learn the convolution kernels by minimizing the cross-entropy loss with SGD.



What it looks like in practice

�69Architecture from Striving for Simplicity: The All Convolutional Net, Spriengberg et al., 2014

It’s convolutions all the way down
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Train this network
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Depth is necessary to make the data linearly separable:

Non linearly-separable Linearly-separable

*Knowledge distillation (Hinton et al.) shows that a shallow student network can learn to imitate perfectly a deep teacher, even if it cannot learn directly from the data.
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But the main use of depth in modern DNN is to change the learning dynamics (more on this 
later), not to increase the expressiveness.
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perturbing the instance of interest in the image space. For example,
LIME decomposes the image of interest into many fractions
and considers different combinations of those fractions as local
neighbors of the interested instance for training. The approach of
meta-predictors blurs a particular region of interest and probes the
original classifier’s behavior. However, those perturbed neighbors
(combinations of image fractions, partially blurred images) are not
natural images and lack of semantic meanings, which may bias
the training of the interpretable model. Also, these approaches
perturb the data in the input space which is not efficient, as the
dimensionality of the input is usually very high. Our proposed
approach is also model-agnostic. However, we take advantage
of the recent advances in deep generative networks to generate
localized neighbors with semantic meanings. Our approach is more
efficient as we use the generative model’s latent space to sample
neighbors, which is much smaller than the input image space.

Visual Analytics on Deep Learning Models. The recent
attempts of applying visual analytics for explainable deep learning
can roughly be categorized into two groups: the model-based and
the example-based. The model-based solutions focus on revealing
the internal architecture of a DNN and the interaction between
different components [19], [20], [21]. For example, CNNVis [19]
models a CNN as a directional acyclic graph (DAG) and clusters
the graph nodes (i.e., neurons) with similar activations to reveal
the model’s behavior. Conversely, the example-based solutions
focus on interpreting the behavior of DNNs with specific data
instances as inputs [22], [23]. For example, ActiVis [23] compares
the activations from different data instances (i.e., examples) to
investigate the potential causes of misclassifications. The combi-
nation of both solutions has also been witnessed in recent visual
analytics works on interpreting deep learning models [24], [25]. For
example, GANViz [24] investigates how the discriminative network
of a GAN model can differentiate a pair of real and fake images,
by tracking the data pair through the network and comparing
them layer by layer. Our visual analytics framework proposed in
this work, i.e., DeepVID, is an example-based solution. It brings
together the power of visual analytics and the state-of-the-art deep
learning solutions to interpret a cumbersome classifier’s behavior
around a particular data instance of interest. Moreover, DeepVID is
a model-agnostic approach, making it a more general solution for
interpreting different types of classification models.

3 BACKGROUND

Teacher
predictions
soft	labels

Student

predictions true	label
hard	labels

distilled		knowledge

Training	data

global

local
pre-trained

to	be	trained

Fig. 2: Left: local interpretation; right: knowledge distillation [15].

Interpretation via Localization. The idea of localization is to
approximate the behavior of a classifier at a point of interest using
a simple interpretable model [8]. Fig. 2 (left) shows an example:
the data points from two different classes are colored in green
and orange; a classifier’s decision boundary is denoted by the red
curve; and the red point represents the sample of interest. Although

interpreting the red curve (i.e., the complicated global boundary of
the classifier) is difficult, the classifier’s local behavior around the
sample of interest can be explained with a simple linear model (the
black dotted line), which is trained using the samples in the shaded
region (neighbors of the sample of interest). Our approach adopts
a similar idea of local approximation to interpret and diagnose a
complicated model, but improves the localization strategy with a
deep generative approach to enhance the efficiency and accuracy.

Knowledge Distillation [15] was proposed to compress cum-
bersome models into light-weighted models for various purposes
(e.g., simplifying the deployment of a model). The idea is to train a
small model (Student) using knowledge distilled from a pre-trained
cumbersome model (Teacher). A commonly used method is to
match the logits from the two models, such as the example shown
in Fig. 2 (right). The Teacher is a pre-trained DNN, which takes
images as input and outputs their class probabilities. The Student
is also a DNN but contains much fewer layers, which can be
trained using the same image inputs. The Student’s training loss
contains two parts, which minimize the difference between the
predicted labels and the true labels (i.e., hard labels), as well as
the predictions from the Teacher (i.e., soft labels). The soft labels
(relative probabilities of different classes) provide rich information
about how the Teacher thinks of the input data. For example, a
‘truck’ image may have some probabilities to be misclassified as a
‘car’, but very small chances to be misclassified as a ‘dog’.

Mathematically, we can denote an image dataset as {X ,Y}
(X : images; Y : image labels). By feeding an image x2X into the
Teacher and Student, we get two sets of logits Zt and Zs. The pre-
diction (i.e., probability distribution) from the Teacher and Student
can be denoted as Pt=so f tmax(Zt/T ) and Ps=so f tmax(Zs/T ),
where T is the distillation temperature controlling the entropy in
Pt and Ps (T=1 by default). The softmax function is defined as:
so f tmax = eyi/T

Âi eyi/T . The training loss for the Student is:

ls = aLhard(Ps,y)+bLso f t(Ps,Pt), (1)

where a , b are two coefficients, y is the true label (hard label) for x
(a one-hot vector), and Lhard , Lso f t are measured by cross-entropy.
Increasing the value of T will increase the entropy in Ps, and thus
enhance the Student to learn the relative probabilities of different
classes from the pre-trained Teacher. However, if T is too large,
the probability of irrelevant classes will also be over-emphasized.

In this work, instead of compressing models, we adopt the idea
of knowledge distillation to distill and transfer knowledge between
models for the purpose of interpretation. In the traditional model
compression applications, the Student is usually required to share
similar model natures (e.g., network structures) with the Teacher.
In our case, however, as the purpose is to locally approximate but
not fully mimic a Teacher’s behaviors, the Student can be much
simpler and more explainable to serve our interpretation goal.

Variational Auto-Encoder (VAE) is an unsupervised neural
network model, which learns a latent representation of the training
data and then reconstructs the data from the learned representation.
It consists of two sub-networks of an encoder and a decoder
(Fig. 3). The encoder compresses the input x2X into a latent vector
z, i.e., z = encoder(x)⇠ q(z|x); whereas the decoder reconstructs
an image x0 from z, i.e., x0 = decoder(z) ⇠ p(x|z). The training
of VAE is conducted by: (1) minimizing the difference between x
and x0; and (2) limiting the distribution of z to be a unit Gaussian
distribution, i.e., p(z)=N (0,1). The training loss of a VAE is:

l(q ,f) =�Ez⇠qq (z|x)[log pf (x|z)]+KL(qq (z|x)||p(z)), (2)
Picture from DeepVid, Wang et al., 2019

Knowledge distillation (Hinton et al., 2015) shows that a shallow student network can learn 
to imitate perfectly a deeper teacher, even if it cannot learn from the data equally well.



Deep parametrization makes linear networks non-linear
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Consider a deep linear network:

� 


While it still implements a simple linear function, the loss landscape is now non-convex and 
the SGD dynamics are much more complex.

f(x) = WLWL− 1…W0 x

Published as a conference paper at ICLR 2019

Figure 1: Learning dynamics as
a function of singular dimension
strength. (a) shows how modes
of different singular value are
learned, (b) shows that there is
a wave of learning that picks up
singular dimensions with smaller
and smaller singular values as
t ! 1.

(where ⌧ ⌘ 1/�), which must be solved from an initial set of student weights at time t = 0 (Saxe
et al., 2013a). We consider two classes of student initializations. The first initialization corresponds
to a random student where the weights W21 and W32 are chosen such that the composite map
W = W32W21 has an SVD W = ✏UVT, where U and V are random singular vector matrices
and all student singular values are ✏. As such a random student learns, the composite map undergoes
a time dependent evolution W(t) = U(t)S(t)V(t)T =

PN2

↵=1 s↵(t)u
↵(t)v↵(t)T . For white inputs,

as t ! 1, W ! ⌃31, and so the time-dependent student singular modes {s
↵(t),u↵(t),v(t)}

converge to the training data singular modes {ŝ↵, û↵
, v̂↵

}. However, the explicit dynamics of the
student singular modes can be difficult to obtain analytically from random initial conditions.

Thus we also consider a special class of training aligned (TA) initial conditions in which W21 and
W32 are chosen such that the composite map W = W32W21 has an SVD W = ✏ÛV̂T. That is,
the TA network (henceforth referred to simply as the TA) has the same singular vectors as the training
data covariance ⌃31, but has all singular values equal to ✏. As shown in (Saxe et al., 2013a), as the
TA learns according to (8), the singular vectors of its composite map W remain unchanged, while
the singular values evolve as s↵(t) = s(t, ŝ↵), where the learning curve function s(t, ŝ) as well as its
functional inverse t(s, ŝ) is given by

s(t, ŝ) =
ŝe

2ŝt/⌧

e2ŝt/⌧ � 1 + ŝ/✏
, t(s, ŝ) =

⌧

2ŝ
ln

ŝ/✏� 1

ŝ/s� 1
. (9)

Here the function s(t, ŝ) describes analytically how each training set singular value ŝ drives the
dynamics of the corresponding TA singular value s, and for notational simplicity, we have suppressed
the dependence of s(t, ŝ) on ⌧ and the initial condition ✏. As shown in Fig. 1A, for each ŝ, s(t, ŝ)
is a sigmoidal learning curve that undergoes a sharp transition around time t/⌧ = 1

2ŝ ln (ŝ/✏� 1),
at which it rises from its small initial value of ✏ at t = 0 to its asymptotic value of ŝ as t/⌧ ! 1.
Alternatively, we can plot s(t, ŝ)/ŝ as a function of ŝ for different training times t/⌧ , as in Fig. 1B.
This shows that TA learning corresponds to a singular mode detection wave which progressively
sweeps from large to small singular values. At any given training time t, training data modes with
singular values ŝ > t/⌧ have been learned, while those with singular values ŝ < t/⌧ have not.

While the TA is more sophisticated than the random student, since it already knows the singular
vectors of the training data before learning, we will see that the analytic solution for the TA learning
dynamics provides a good approximation to the student learning dynamics, not only for the training
error, as shown in (Saxe et al., 2013a), but also for the generalization error as shown below.

The results in this section assume a single hidden layer, but Saxe et al. (2013a) derived t(s, ŝ) for
networks of arbitrary depth and we apply our theory to some deeper networks. The general differential
equation and derivations for deeper networks can be found in Appendix A.

3.2 HOW THE TEACHER IS BURIED IN THE TRAINING DATA: A RANDOM MATRIX ANALYSIS

In the previous section, we reviewed an exact analytic solution for the composite map of a TA network,
namely that its singular modes are related to those of the training data through the relation

s↵(t) = s(t, ŝ↵), u↵(t) = û↵
, v↵(t) = v̂↵

. (10)

However, computation of the generalization error through (5) then requires understanding how the
teacher singular modes of W are buried within the noisy training data singular modes of ⌃31 through
the relation (3). Since the input matrix X̂ is orthonormal, ⌃31 is simply a perturbation of the low

4

Example: In a regression problem y=Ax, where x is gaussian, a deep linear network 
converges faster on components with the larger singular value.



CNNs for non-image data
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In general, we can construct DNNs tailored to some data by finding a group G that naturally 
acts on the data and using G-convolutions.

Example. The input is a set of n values � . Since the output needs to be 
invariant to permutation of the elements, we can use � -convolutions.

x = {x1, …, xn }
πn

Example. For weather forecast, we get measurements on a sphere 
(earth surface). We want the prediction to be �  invariant, use 
� -convolutions.

SO(2)
SO(2)

Example. Molecules, proteins, …
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RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN

THE CAT'S VISUAL CORTEX

BY D. H. HUBEL AD T. N. WIESEL
From the Neurophysiolojy Laboratory, Department of Pharmacology

Harvard Aledical School, Boston, Massachusetts, U.S.A.

(Received 31 July 1961)

What chiefly distinguishes cerebral cortex from other parts of the
central nervous system is the great diversity of its cell types and inter-
connexions. It would be astonishing if such a structure did not profoundly
modify the response patterns of fibres coming into it. In the cat's visual
cortex, the receptive field arrangements of single cells suggest that there is
indeed a degree of complexity far exceeding anything yet seen at lower
levels in the visual system.
In a previous paper we described receptive fields of single cortical cells,

observing responses to spots of light shone on one or both retinas (Hubel
& Wiesel, 1959). In the present work this method is used to examine
receptive fields of a more complex type (Part I) and to make additional
observations on binocular interaction (Part II).

This approach is necessary in order to understand the behaviour of
individual cells, but it fails to deal with the problem of the relationship
of one cell to its neighbours. In the past, the technique of recording
evoked slow waves has been used with great success in studies of
functional anatomy. It was employed by Talbot & Marshall (1941) and
by Thompson, Woolsey & Talbot (1950) for mapping out the visual cortex
in the rabbit, cat, and monkey. Daniel & Whitteiidge (1959) have recently
extended this work in the primate. Most of our present knowledge of
retinotopic projections, binocular overlap, and the second visual area is
based on these investigations. Yet the method of evoked potentials is
valuable mainly for detecting behaviour common to large populations of
neighbouring cells; it cannot differentiate functionally between areas of
cortex smaller than about 1 mm2. To overcome this difficulty a method has
in recent years been developed for studying cells separately or in small
groups during long micro-electrode penetrations through nervous tissue.
Responses are correlated with cell location by reconstructing the electrode
tracks from histological material. These techniques have been applied to

Pictures from Neuroscience, Purves et al., and Are Cortical Models Really Bound by the “Binding Problem”?, Riesenhuber and Poggio 
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(A) Experimental setup (B) 

Light bar 
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projected 

FIGURE 12.8 Neurons In the primary visual cortex 
respond Hledlvely to oriented edges. (A) An anesthetized 
animal is fitted with contact lenses to focus the eyes on a saeen, 
where images can be projected; an extracellular electrode records 
the neuronal responses. (8) Neurons in the primary visual cortex 
typically respond vigorously to a bar of light oriented at a particu-
lar angle and less strongly-or not at all-to other orientations. 
(CJ Orientation tuning wrve fur a neuron in primary visual cortex. 
In this example, tne highest rate of action potential discharge 
OCaJrs for vertical edges--the neuron's •prefem!d• orientation. 
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visual cortex. As a result, a given orientation in a visual scene 
appears to be "encoded" in the activity of a distinct popula-
tion of orientation-selective neurons. 

To appreciate how the properties of an image might be 
represented by populations of neurons that are tuned to 
different orientations, an image can be decomposed into its 
frequency components (an analytical approach discovered 
by the French mathematician Joseph Fourier) and then fil-
tered to create a set of images whose spectral composition 
simulate the information that would be conveyed by neu-
rons tuned to different orientations (Figure 12.9). Each class 
of orientation-selective neuron transmits only a fraction of 

FIGURE 12.9 Representation of a visual 
Image by neurons selective for differ-
ent stimulus orientations. This simulation 
uses Image mathematics (selective fllterlng of 
the two-dimensional Fourier transform of the 
image} to illustrate the attributes of a visual 
image (greyhound and fence) that would be 
represented in the responses of populations 
of cortical neurons tuned to different pre-
ferred orientations. The panels surrounding 
the image illustrate the components of the 
image that would be detected by neurons 
tuned to vertical, horizontal, and oblique ori-
entations (blue boxes). In ways that are still 
not understood, the activity in these dith!rent 
populations of neurons is integrated to yield 
a coherent representation of the image fea-
tures. (Photos courtesy of Steve Van Hooser 
and Elizabeth Johnson.) 
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12. llB). The availability of functional imaging techniques 
has made it possible to visualize the two-dimensional layout 
of the map of orientation preference on the surface of visual 
cortex (Figure 12.12). Much of the map of orientation pref-
erence exlubits smooth progressive change, like that seen 
for the mapping of visual space. This smooth progression 
is interrupted periodically by point discontinuities, where 
neurons with disparate orientation preferences lie close 
to each other in a pattern resembling a child's pinwheel. 
The full range of orientation preferences (0--180 degrees) 
is replicated many times such that neurons with the same 
orientation preference are arrayed in an iterated fashion, 
repeating at approximately 1-millimeter intervals across the 
primary visual cortex. This iteration ensures that the full 
range of orientation values are represented for each region 
of visual space-that is, there are no "holes11 in the capac-
ity to perceive all stimulus orientations. Thus, each point in 
visual space lies in the receptive fields of a large population 
of neurons that collectively occupy several millimeters of 
cortical surface area, an area that contains neurons having 
the full range of orientation preferences. As described in 
Box 9B, a number of other cortical regions show a similar 
columnar arrangement of their processing circuitry. 

Combining Inputs from Two Eyes 
Unlike neurons at earlier stages in the primmyvisual path-
way, most neurons in striate cortex are binocular, respond-
ing to stimulation of both the left and right eyes. Inputs 
from both eyes are present at the level of the lateral ge:nicu-
late nucleus, but contralateral and ipsilateral retinal axons 
terminate in separate layers, so that individual geniculate 
neurons are strictly monocular, driven by either the left or 
right eye, but not by both (Figure 12.13A-C). Activity aris-
ing from the left and right eyes that is conveyed by genicu-
late axons continues to be segregated at the earliest stages 
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FIGURE 12.12 Function•I imaging 
rave•ls orderly m•pping of orientation 
preference In the primary visual cortex. 
(A) Surface view of the striate cortex. using 
intrinsic signal imaging techniques to visual-
ize the map of preferred orientation. Color:s 
indicate the average preferred orientation of 
columns at a given location; red indicates the 
location of columns that respond preferential-
ly to horlzontal orientations, blue those that 
respond preferentially to vertical orientations; 
other colors represent intennediate orienta-
tions. The smooth progression of preferred 
orientations Indicated by the gradations In 
color is interTIJpted by point discontinuities 
(pinwheel centers; white circles). (B) Single-
cell view of a •pinwheel• visualized using two-
photon Imaging of calcium signals. Note that 
adjacent cells have slmllar preferred orienta-
tions except at the very center, where nearby 
cells exhibit nearly orthogonal orientation 
preferences. (A courtesy of D. Fitzpatrick; B 
modified from Ohki et al., 2006.) 

of cortical processing as the axons of geniculate neurons 
terminate in alternating eye-specific ocular dominance 
column& within cortical layer 4 (Figure 12.130). Beyond 
this point, however, signals from the two eyes converge 
as the axons from layer 4 neurons in adjacent monocular 
stripes synapse on individual neurons in other cortical lay-
ers. While most neurons outside of layer 4 are binocular, 
the relative strength of the inputs from the two eyes varies 
from neuron to neuron in a colUIIUlar fashion that reflects 
the pattern of ocular dominance stripes in layer 4. Thus, 
neurons that are located over the centers of layer 4 ocu-
lar dominance columns respond almost exclusively to the 
left or right eye, while those that lie over the borders be-
tween ocular dominance columns in layer 4 respond equally 
well to stimulation of either eye. Similar to the mapping 
of orientation preference, tangential electrode penetrations 
across the superficial layers reveal a gradual, continuous 
shift in the ocular dominance of the recorded neurons (see 
Figure 12.13B,C). With the exception of layer 4, which is 
strictly monocular, vertical penetrations encounter neurons 
with similar ocular preferences. 

Bringing together the inputs from the two eyes at the 
level of the striate cortex provides a basis for stereopsis, the 
sensation of depth that arises from viewing nearby objects 
with two eyes instead of one. Because the two eyes look at 
the world from slightly different angles, objects that lie in 
front of or behind the plane of fixation project to non-cor-
responding points on the two retinas. To convince yourself 
of this fact, hold your hand at arm's length and fixate on 
the tip of one finger. Maintain fixation on the finger as you 
hold a pencil in your other hand about haH an arm's length 
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as the axons from layer 4 neurons in adjacent monocular 
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THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION

IN THE BRAIN1

F. ROSENBLATT
Cornell Aeronautical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system?

2. In what form is information
stored, or remembered?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

The first of these questions is in the
province of sensory physiology, and is
the only one for which appreciable
understanding has been achieved.
This article will be concerned pri-
marily with the second and third
questions, which are still subject to a
vast amount of speculation, and where
the few relevant facts currently sup-
plied by neurophysiology have not yet
been integrated into an acceptable
theory.

With regard to the second question,
two alternative positions have been
maintained. The first suggests that
storage of sensory information is in
the form of coded representations or
images, with some sort of one-to-one
mapping between the sensory stimulus

1 The development of this theory has been
carried out at the Cornell Aeronautical Lab-
oratory, Inc., under the sponsorship of the
Office of Naval Research, Contract Nonr-
2381(00). This article is primarily'an adap-
tation of material reported in Ref. IS, which
constitutes the first full report on the program.

and the stored pattern. According to
this hypothesis, if one understood the
code or "wiring diagram" of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the "memory traces" which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
"memory" of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain
models has been developed around the
idea of a coded, representational mem-
ory (2, 3, 9, 14). The alternative ap-
proach, which stems from the tradi-
tion of British empiricism, hazards the
guess that the images of stimuli may
never really be recorded at all, and
that the central nervous system
simply acts as an intricate switching
network, where retention takes the
form of new connections, or pathways,
between centers of activity. In many
of the more recent developments of
this position (Hebb's "cell assembly,"
and Hull's "cortical anticipatory goal
response," for example) the "re-
sponses" which are associated to
stimuli may be entirely contained
within the CNS itself. In this case
the response represents an "idea"
rather than an action. The impor-
tant feature of this approach is that
there is never any simple mapping of
the stimulus into memory, according
to some code which would permit its
later reconstruction. Whatever in-
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to form pathways to the same sets of
responding cells. Those which are
markedly "dissimilar" will tend to
develop connections to different sets of
responding cells.

4. The application of positive and/
or negative reinforcement (or stimuli
which serve this function) may facil-
itate or hinder whatever formation of
connections is currently in progress.

5. Similarity, in such a system, is
represented at some level of the nerv-
ous system by a tendency of similar
stimuli to activate the same sets of
cells. Similarity is not a necessary
attribute of particular formal or geo-
metrical classes of stimuli, but de-
pends on the physical organization of
the perceiving system, an organiza-
tion which evolves through interaction
with a given environment. The
structure of the system, as well as the
ecology of the stimulus-environment,
will affect, and will largely determine,
the classes of "things" into which the
perceptual world is divided.

THE ORGANIZATION OF A PERCEPTRON
The organization of a typical photo-

perceptron (a perceptron responding
to optical patterns as stimuli) is shown
in Fig. 1. The rules of its organiza-
tion are as follows:

1. Stimuli impinge on a retina of
sensory units (S-points), which are
assumed to respond on an all-or-
nothing basis, in some models, or with
a pulse amplitude or frequency pro-
portional to the stimulus intensity, in
other models. In the models con-
sidered here, an all-or-nothing re-
sponse will be assumed.

2. Impulses are transmitted to a set
of association cells (A-units) in a
"projection area" (Ai). This pro-
jection area may be omitted in some
models, where the retina is connected
directly to the association area (An).

FIG. 1. Organization of a perceptron.

The cells in the projection area each
receive a number of connections from
the sensory points. The set of S-
points transmitting impulses to a par-
ticular A-unit will be called the origin
points of that A-unit. These origin
points may be either excitatory or in-
hibitory in their effect on the A-unit.
If the algebraic sum of excitatory and
inhibitory impulse intensities is equal
to or greater than the threshold (6) of
the A-unit, then the A-unit fires, again
on an all-or-nothing basis (or, in some
models, which will not be considered
here, with a frequency which depends
on the net value of the impulses
received). The origin points of the
A-units in the projection area tend to
be clustered or focalized, about some
central point, corresponding to each
A-unit. The number of origin points
falls off exponentially as the retinal
distance from the central point for
the A-unit in question increases.
(Such a distribution seems to be sup-
ported by physiological evidence, and
serves an important functional pur-
pose in contour detection.)

3. Between the projection area and
the association area (An), connections
are assumed to be random. That is,
each A-unit in the An set receives
some number of fibers from origin
points in the AI set, but these origin
points are scattered at random
throughout the projection area.
Apart from their connection distri-
bution, the An units are identical
with the AI units, and respond under
similar conditions.

4. The "responses," Ri, R^, . . . ,
Rn are cells (or sets of cells) which



Features learned by a DNN
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What is a representation?
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Minimal I(x; z) = minimal

Nuisance invariance n ⫫ y ⇒ I(n; z) = 0

Sufficient I(z; y) = I(x; y)

Compositional Minimal component correlation?

data representation task

nuisances

x z y

n
y = label, segmentation, reconstruction, …

A. and Soatto, Information Dropout: finding optimal representation through noisy computation, PAMI 2017



A Variational Principle for representation learning:

The Information Bottleneck principle
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A minimal sufficient representation is the solution to:

minimizep(z |x) I(x ; z)

s.t. H(y |z) = H(y |x)

Information Bottleneck Lagrangian: (Tishby et al., 1999)

L = Hp,q(y |z) + �I(z ; x)
regularizercross-entropy



Invariant if and only if minimal
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Theorem (A., Soatto) (informal) Let z be a sufficient representation and n a nuisance. Then, 

Moreover, there exists a nuisance n for which equality holds.

I(z ; n)  I(z ; x)� I(x ; y)
constantminimalityinvariance

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018

Corollary: A representation is maximally invariant if and only if it is minimal

Definition. A representation z is minimal for the task y if it minimizes I(z; x) among the 
sufficient representations.



Compression without loss of *useful* information
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Task Y = Is this the picture of a dog?

Image source https://en.wikipedia.org/wiki/File:Terrier_mixed-breed_dog.jpg

Less information I(z; x) in the representation

The task information I(z; y) remains about the same

The IB Lagrangian �  allows to interpolate between all the various 

representations by varying � .
ℒ(θ) = Hpθ

(y |z) + β Ipθ
(z; x)

β



Compression in practice
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Reduce the dimension Increase dimension +

Inject noise in the map

Examples: max-pooling, dimensionality reduction Examples: dropout, batch-normalization

x1

x2

x3

z1

z2

X Z

x4

x1

x2

x3

z1

z2

X Z

x4

z3

z4



MaxPooling: Reducing information by reducing the dimension

�85Image source https://neurohive.io/en/popular-networks/vgg16/

Downsample the spatial dimension by selecting only local maxima of the activations:

Nowadays replaced by more expensive (but better performing) strided convolutions.



Dropout: Reducing information by adding noise
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Introduce binary multiplicative noise in the activations:

�z → 1
p

z ⊙ ϵ,  where ϵ ∼ Bernoulli(p)
In practice disables random units during training:

Nowadays, batch normalization is used instead of dropout as it has a similar effect and 
performs much better.



Notebook
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Back to the general Information Bottleneck
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A minimal sufficient (and hence invariant) representation is the solution to:

minimizep(z |x) I(x ; z)

s.t. H(y |z) = H(y |x)

Information Bottleneck Lagrangian: (Tishby et al., 1999)

L = Hp,q(y |z) + �I(z ; x)
regularizercross-entropy



Blahut-Arimoto algorithm
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In general, how do we minimize the IB Lagrangian �  to find an 
optimal representation? We can use the following iterative algorithm:

ℒ(θ) = Hpθ
(y |z) + β Ipθ

(z; x)

But what happens if p(z|x) is too large, or parametrized in a non-convex way?

Encoder p(z|x) Decoder p(y|z)

pt(z |x) 
pt(z)

Zt(x,�)
exp(�1/�d(x, z))

pt+1(z) 
X

x

p(x)pt(z |x)

pt+1(y |z) 
X

y

p(y |x)pt(x |z) …

Tishby et al,, The information bottleneck method, 2000

Exploits the fact that the set of probability distributions is convex.



Minimizing the information by adding noise
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How do we minimize �   when �  is complex, e.g., computed by a DNN)?ℒ(θ) pθ(z |x)

Lemma. �  for any q(z) and is equal if and only if q(z) = p(z).I(z; x) ≤ ,x[KL(p(z |x) ∥ q(z))]

ℒ(θ) = Hpθ
(y |x) + β I(x; z)

= Hpθ
(y |x) + β ,x[ KL(pθ(z |x) ∥ pθ(z)) ]

Problem: the marginal distribution 
is too complex to compute

A. and Soatto, Information Dropout: finding optimal representations by adding noise, 2016

Hence: � , and the latter minimization problem is simpler.min
θ

ℒ(θ) = min
θ, ϕ

ℒ(θ, ϕ)

ℒ(θ) ≤ Hpθ
(y |x) + β ,x[ KL(pθ(z |x)∥qϕ(z)) ]

= : ℒ(θ, ϕ)

Using this:



Example of implementation
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ℒ(θ, ϕ) = Hpθ
(y |x) + β ,x[ KL(pθ(z |x)∥qϕ(z)) ]

Algorithm: 

1. Choose a simple family of distributions �  and � , for example: 

�  and �  

Where �  can be implemented by a DNN.

2.   Train the network to minimize:

� 


3.   This can be seen equivalently as minimizing the loss with a noisy representation � , 
�  instead of with a deterministic representation as usual.

pθ(z |x) qϕ(z)
pθ(z |x) ∼ N( fθ(x), Σ) qϕ(z) ∼ N(μϕ, Σϕ)

fθ(x)

ℒ(θ, ϕ) = Hpθ
(y |x) + β ,x[ KL(N(μθ(x), Σθ(x)) ∥ N(μϕ, Σϕ)) ]

= Hpθ
(y |x) + β ,x[( f(x) − μϕ)TΣ− 1

ϕ ( f(x) − μϕ) + tr(Σ/Σϕ − I) − log Σ/Σϕ]
z = f(z) + ϵ

ϵ ∼ N(0, Σ)

Learning a minimal sufficient representation z of the data.



Example: Variational Auto-Encoders
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Encoder

Input
Decoderx x̂

Representation z

Reconstruction

Task: Train a network to encode and decode the input, while minimizing both the 
reconstruction error and the information I(z; x) used to encode it.

Minimize I(z; x) Minimize �H(x | ̂x)



Example: Variational Auto-Encoders
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Components of the representation z 

Higgins et al., β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017
Burgess et al., Understanding Disentangling in beta-VAE” 2017

Im
ag

e 
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ed
 

Each component of the learned representation corresponds to a different semantic factor.

Pictures courtesy of Higgins et al., Burgess et al.



Learning disentangled representations
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Figure 3: Utilisation of data generative factors as a function of coding capacity. Top left: the
average KL (in nats) per factor fi as the training progresses and the total information capacity C
of the latent bottleneck q(z|f) is increased. It can be seen that the early capacity is allocated to
positional latents only (x and y), followed by a scale latent, then shape and orientation latents. Top
right: same but plotted with respect to the reconstruction accuracy. Bottom: image samples and
their reconstructions throughout training as the total information capacity of z increases and the
different latents zi associated with their respective data generative factors become informative. It
can be seen that at 3.1 nats only location of the sprite is reconstructed. At 7.3 nats the scale is also
added reconstructed, then shape identity (15.4 nats) and finally rotation (23.8 nats), at which point
reconstruction quality is high.

to evaluate how much information the model would choose to retain about each factor in order to best
reconstruct the corresponding images given a total capacity constraint. In this model, the factors are
each independently scaled by a learnable parameter, and are subject to independently scaled additive
noise (also learned), similar to the reparameterised latent distribution in �-VAE. This enables us to
form a KL divergence of this factor distribution with a unit Gaussian prior. We trained the model to
reconstruct the images with samples from the factor distribution, but with a range of different target
encoding capacities by pressuring the KL divergence to be at a controllable value, C. The training
objective combined maximising the log likelihood and minimising the absolute deviation from C
(with a hyperparameter � controlling how heavily to penalise the deviation, see Sec. A.2):

L(✓,�;x(f), z, C) = Eq�(z|f)[log p✓(x|z)]� � |DKL

�
q�(z|f) k p(z)

�
� C| (7)

In practice, a single model was trained across of range of C’s by linearly increasing it from a low
value (0.5 nats) to a high value (25.0 nats) over the course of training (see top left panel in Fig. 3).
Consistent with the intuition outlined above, at very low capacities (C < 5 nats), the KLs for all the
factors except the X and Y position factors are zero, with C always shared equally among X and Y.
As expected, the model reconstructions in this range are blurry, only capturing the position of the

6

Start with very high β and slowly decrease during training.

Beginning: Very strict bottleneck, only encode most important factor

End: Very large bottleneck, encode all remaining factors

Think of it as a non-linear PCA, where training time disentangles the factors.

Components of the representation z

Im
ag

e 
se

ed
Higgins et al., β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017
Burgess et al., Understanding Disentangling in beta-VAE” 2017



The catch
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0000000000000000

0000000000000001

0000000000000010

0000000000000011

x z y

0100

0001

0010

0101

16 bits24,576 bits 4 bits

What if we just represent an image by its index in the training set (or by a unique hash)?

It is a sufficient representation and it is close to minimal.



This Information Bottleneck is wishful thinking
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The IB is a statement of desire for future data we do not have:

min
q(z |x)

L = Hp,q(y |z) + � I(z ; x)
<latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w="></latexit><latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w="></latexit><latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w="></latexit><latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w="></latexit>

What we have is the data collected in the past.

What is the best way to use the past data in view of future tasks?



Lecture 3



{ }, (car,  horse, deer, …)Training Set

Test Image

Weights Representation of 
past data



Can we separate structural information from noise?
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Examples: 

x = 1101011111111011111101101110… 


xi ~ Bernoulli(p=0.8), has entropy H(x) = N log(p). But the only “structural information” is 
that p = 0.8, the rest is randomness.

The fact that is a rainy outdoor scene is structural information of the image, the 
positions of the rain drops is pure randomness.
Picture from https://buffalonews.com/2019/06/16/rain-will-return-this-week-after-record-setting-saturday/

https://buffalonews.com/2019/06/16/rain-will-return-this-week-after-record-setting-saturday/


Kolmogorov’s complexity
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The Kolmogorov complexity of a string is the length of the shortest 
program that can output that string. (Defined up to an O(1) factor)

Examples: 

A random sequence of length n of 0 and 1’s:


x = 10001110110…1001010011010      K(x) = n + O(1) 

A repeating pattern of 0 and 1’s has:

x = 10101010101….101010101010      K(x) = O(1) 

The digits of π are statistically random, but have low complexity:

x = 3.141592653589793238462643…      K(x) = O(1) 



The Kolmogorov Structure Function
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�Sx(t) = min
K(p)< t

− log p(x)

Cost of encoding the 
model

Cost of encoding the 
data using the model

Define the Kolmogorov Structure Function as:

Extreme cases:

�p(z) = δx(z) ⇒ K(p) = K(x) and  log p(x) = 0
�p(z) = Unif(z) ⇒ K(p) = 1 and  log p(x) = N log c

Kolmogorov's Structure Functions and Model Selection,  Vereshchagin and Vitanyi, 2002

Minimal sufficient statistic



The Kolmogorov Structure of a Task
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How can we define the structure of a task?


Let �  be a dataset. For any �  define � .$ = {(xi, yi)}N
i= 1 pθ(y |x) L($; pθ) = ∑N

i= 1 pθ(yi |xi)

S$(t) = min
K(pθ)≤t

L($; pθ)

Information Complexity of Tasks, their Structure and their Distance,  Achille et al., 2018
Kolmogorov's Structure Functions and Model Selection,  Vereshchagin and Vitanyi, 2002

The structure function of the dataset �  is defined by:$



The Kolmogorov Structure of a Task
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Tr
ai

ni
ng
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s

Kolmogorov complexity of model

Increasing the complexity of the model leads

to big gains in accuracy: We are learning the structure of the problem.

After learning all the structure, we can only 
memorize: inefficient asymptotic phase.

Optimal

Information Complexity of Tasks, their Structure and their Distance,  Achille et al., 2018

Tangent = 1 in the asymptote: Need to store 1 
bit in the model to decrease the loss by 1 bit

Kolmogorov minimal sufficient 
statistic

Kolmogorov's Structure Functions and Model Selection,  Vereshchagin and Vitanyi, 2002

S$(t) = min
K(pθ)≤t

L($; pθ)



The Information in the Weights
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Hinton, Van Camp, 1993

How do we measure the complexity of a DNN?

Assume some prior distribution p(w) over the weights. Codifying a particular set of weights 
as real numbers requires infinite information.

Idea: Add noise to the weights to encode with a finite amount of information (Hinton, 1993)

w

q(w|D)

p(w)

p(w)

� |encoding | = KL( q(w |$) ∥ p(w) )



The Information in the Weights
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fixed prioroptimal noise

A., Paolini, Soatto, Information Complexity of Learning Tasks, 2019
A., and Soatto, Where is the Information in a DNN?, 2019

L = Ew⇠q(w |D)[LD(w)] + � KL(q(w |D) k p(w))
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In our setting, consider a noisy weight distribution q(w | D). Measure the amount of noise by 
its divergence KL( q(w | D) || p(w) ) from a fixed prior p(w).

S(t) = min
KL(q(w |D) k p(w))<t

Ew⇠q(w |D)[LD(w)]
<latexit sha1_base64="2TSZnpBGg0ddxlZv443Z+O3aieE="></latexit><latexit sha1_base64="2TSZnpBGg0ddxlZv443Z+O3aieE="></latexit><latexit sha1_base64="2TSZnpBGg0ddxlZv443Z+O3aieE="></latexit><latexit sha1_base64="2TSZnpBGg0ddxlZv443Z+O3aieE="></latexit>

Or, equivalently the Lagrangian:

Information in the Weights

For a given β we call Information in the Weights the value of the KL divergence of the 
optimal solution.

Expected loss over the 
noisy weights



Example: Measuring Information by Adding Noise
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Idea: We can estimate the amount of information contained in the weights by corrupting 
them with noise and measuring the decrease in performance.

Shannon, Prediction and Entropy of Printed English, Bell System Technical Journal, 1951

Example: Shannon (1951) estimates the information content of the English language by 
corrupting random letters and measuring the reconstruction error of English speakers.

“Thif is a vevy moisy party” → “This is a very noisy party”

Prediction and Entropy of Printed
By C. E. SHANNON

(Manuscript &ceiDcd Sept. IS, I950)

A Dew method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

1. INTRODUCTION

I N A previous paper! the entropy and redundancy of a language have
been defined. The entropy is a statistical parameter which measures,

in a certain sense, how much infonnation is produced on the average for
each letter of a text in the language. If the language is translated into binary
digits (0 or 1) in the most efficient way, the entropy H is the average number
of binary digits required per letter of the original language. The redundancy,
on the other hand, measures the amount of constraint imposed on a text in
the language_ due to its statistical structure, e.g., in English thehigh fre-
quency of the letter E, the strong tendency of H to follow T or of U to follow
Q: It was estimated that when statistical effects extending over not more
than eight letters are considered the entropy is roughly 2.3 bits per letter,
the redundancy about 50 per cent.
Since then a new method has been found for estimating· these quantIties,

which is more sensitive and takes account of long range statistics, iniluences
extending over phrases, sentences, etc. This method is based on a study of
the predictability of English; how well can the next letter of a text be pre-
dicted when the preceding .1\7 letters are known. The results of some experi-
ments in prediction will be given, and a theoretical analysis of some of the
properties of ideal prediction. By combining the experimental and theoreti-
cal results it is possible to estimate upper and lower bounds for the entropy
and redundancy. From this analysis it appears that, in ordinary literary
English; the long range statistical effects (up to 100 letters) reduce the
entropy to somethiD.g of the order of one bit per letter, with a corresponding
redundancy of roughly 75%. The redundancy may be still higher when
structure extending over paragraphs, chapters, etc: is included. However, as
the lengths involved ate 4J.creased, the parameters in question become more

1 C. E. Shannon, <lA Mathematical Theory of Communication," Bdt S;'stem Tedmical
Journal, v. 27, pp. 379-423, 623-656, July, October, 1948.

PREDICTION AN

erratic and uncertain, and t:
involved.

2. ENTROPY CALCULA

One method of calculatine
Fo, F I , F 2 , ••• , which sue
of the language into accoun
the entropy; it mea
to statistics extending over _

FH = -LP(b,
i,j

-:-L pCb,

in which: bi is a block of A
j is an arbitrary
pCb, ,j) is the pr
poJj) is the cone

and is E
The equation (1) can be

(conditional entropy) of th
known. As N is increased;
and the entropy, H, is givt

The N-gram entropies 1
standard tables of letter,
punctuation are ignored Vi

be taken (by definition) to
frequencies and is given t

"F , =-L
i=l .

The digram approximatio

F, - p(i

7.70 - 4.
2: Fletcher Pratt, "Secret a·

Ii
;;



Let’s rewrite this using Information Theory
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We used an upperbound, what is the best we value it can assume?

I(w; $) ≤ ,$[KL(q(w |$)∥p(w))],
Recall that:

which is obtained when p(w) = q(w|D). Hence, on expectation over the datasets, 
the best function loss function to use to recover the task structure is:

ℒ(M) = ,$[H($ |w)] + λI(w; $) .

IB Lagrangian for the weights

ℒ(M) = ,w∼q(w|$)[Hp,q($ |w)] + λ KL(q(w |$)∥p(w)) .



The Information in a Deep Neural Network
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L(w) = Hp,q(D|w) + � KL(q(w |D) k p(w))
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fixed prioroutput of training

A. et al., The Information Complexity of Learning Tasks, their Structure and their Distance, ArXiv 2019

Li et al., Visualizing the Loss Landscape of Neural Nets, ICLR 2018, Hochreiter and Schmidhuber, Flat Minima, Neural Computation1997

Fisher Information: p(w) = Gaussian prior, assume the loss is locally quadratic

⇒ Implicitly minimized by SGD

F = curvature of loss 
landscapeKL =

kwk2

�2
+ log |2�2NF + I|
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Lo
ss

Weight configuration

Sharp minima Flat minimum

Shannon Information: adapted prior p(w) := ED[q(w |D)]
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ED[KL] = I(w ;D)
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https://arxiv.org/abs/1904.03292


The PAC-Bayes generalization bound
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PAC-Bayes bound on the test error: (Catoni, 2007; McAllester 2013)

This gives non-vacuous generalization bounds.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
Dziugaite and Roy, Computing non-vacuous generalization bounds for deep neural networks, UAI 2017

Moreover, the sharpest bound is obtained when E[KL] = I(w; D).

What matters for generalization is not the number of weights, 
but the information they contain.

Li2bi 
1

1� 1
2�

⇥
Ew [LD(w)] + � KL(q(w |D) k p(w))

⇤
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Information is a better measure of complexity than number of parameters
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Bias-variance tradeoff

Variance

Bias2

Total error

Model complexity

Er
ro

r

Optimal DNN

Optimal model

Optimal DNN

Information complexity

Parametrizing the complexity with information in the weights, we recover bias-variance 
trade-off trend.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
Arora et al., Stronger generalization bounds for deep nets via a compression approach, ICML 2018



Relation between Fisher and Shannon
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SGD minimizes the Fisher Information of the Weights. However, generalization is 
governed by the Shannon Information.

Proposition. Assuming the dataset is parametrized in a differentiable way, we have:

Where w* = w*(D) is the result of running SGD on dataset D and F(w) is the Fisher 
Information Matrix in w.

I(w ;D) ⇡ H(D)� ED
h
log

⇣ (2⇡e)k

|rDw ⇤ F (w ⇤) rDw ⇤T |

⌘i
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A. and Soatto, Where is the Information in a Deep Network?, 2018



Stability of SGD
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I(w ;D) ⇡ H(D)� ED
h
log

⇣ (2⇡e)k

|rDw ⇤ F (w ⇤) rDw ⇤T |

⌘i
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w0

wT

w’T

$

$′�

Imagine training a network on a dataset D and on a slightly perturbed dataset D’

Dependency of final training 
point on the dataset

Curvature at the final 
point



Phase transition
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! < 1 ⇒ overfitting

! > 1 ⇒ underfitting

! < 1 ⇒ overfitting

! >> 1 ⇒ underfitting

fitting

Using the regularized loss:

10�2 10�1 100 101 102

Value of �
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20%

40%

60%

80%

100%

T
ra

in
er

ro
r

All-CNN

ResNet

Small AlexNet

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018

Phase transition

L(w) = Hp,q(D|w) + �KL(q(w |D)kp(w))

For random labels there is a transition between over- and under-fitting at β = 1.



Networks can overfit, but they have to pay a price
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Information in weights as a function of the number of corrupted labels.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



Two Bottlenecks
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dataset weights real distribution
D w p(y|x)

data activations label
x z y

Activations IB

Invariance

Weights IB

Generalization

�115

min
w
L = Hp,qw (y |z) + �I(D;w)
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min
q(z |x)

L = Hp,q(y |z) + �I(z ; x)
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The Emergence Bound
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A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
A.  and Soatto, Where is the Information in a Deep Network?, 2019

Proposition. Let z = fw(x) be a layer of a network. To a first order approximation, the 
information in the activations is given by:

where F(w) is the Fisher Infomation of the weights, Jf is the jacobian of fw w.r.t. w.

I2z(x ; z) ⇡ H(x)� log
⇣ (2⇡e)k

|rx fw (x)t Jtf F (w) Jf rx fw (x)|

⌘
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Take-away: Reducing information in the weights reduces information in the 
activations, hence it promotes invariant classifiers.

Let z = fw(x) be a layer of a network, and let zn be the representation obtained by 
adding noise to the weigths. We define the effective information as Ieff (x; z) = I(x; zn)



Explanation
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I2z(x ; z) ⇡ H(x)� log
⇣ (2⇡e)k

|rx fw (x)t Jtf F (w) Jf rx fw (x)|

⌘
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Jacobian of activations wrt inputs

Jacobian of representation wrt to 
weights

Curvature of loss function



Training data Testing

Weights

Invariant representation

{ }, (car,  horse, deer, …)

Compression of the weights biases toward invariant and disentangled representations.

PAST FUTURE

Weights Activations

Generalization (PAC-Bayes) Invariance (Emergence)

Minimality (Shannon) Minimality (Fisher)



{ }, (car,  horse, deer, …)Training Set

Test Image

Weights

Minimal Invariant

Representation



What is the distance between two tasks?
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MNIST
Fashion MNIST

SVHN

CIFAR-10
ImageNet

KITTI



A Topology on the Space of Tasks
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Distance between tasks: 

That is, how much more structure do we need to learn?

d($1 → $2) = I($1$2; w) − I($1; w)
Complexity of 

learning together
Complexity of 
learning one

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019

Notice that this is an asymmetric distance

https://arxiv.org/abs/1904.03292


A Topology on the Space of Tasks
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Difficult task to easy task

Easy task to difficult task
Similar tasks cluster together

d($1 → $2) = I($1$2; w) − I($2; w)

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019

https://arxiv.org/abs/1904.03292


TASK2VEC: Embedding tasks in a metric space 
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Recovers species taxonomy on 
iNaturalist

Idea: Represent each tasks in a metric space using its Fisher Information Matrix diagonal.

Task Embeddings Domain Embeddings

Actinopterygii (n)

Amphibia (n)

Arachnida (n)

Aves (n)

Fungi (n)

Insecta (n)

Mammalia (n)

Mollusca (n)

Plantae (n)

Protozoa (n)

Reptilia (n)

Category (m)

Color (m)

Gender (m)

Material (m)

Neckline (m)

Pants (m)

Pattern (m)

Shoes (m)

Task Embeddings Domain Embeddings

Actinopterygii (n)

Amphibia (n)

Arachnida (n)

Aves (n)

Fungi (n)

Insecta (n)

Mammalia (n)

Mollusca (n)

Plantae (n)

Protozoa (n)

Reptilia (n)

Category (m)

Color (m)

Gender (m)

Material (m)

Neckline (m)

Pants (m)

Pattern (m)

Shoes (m)

Recovers a meaningful topology 
on hundred of tasks

A. et al., TASK2VEC: Task embedding for meta-learning, 2019
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TASK2VEC: Task Embedding for Meta-Learning

We thank the reviewers for their thoughtful comments and

positive feedback. They felt it was a “novel approach” [R2]

to a “practically important” [R3] problem with “clear justi-

fications for design choices” [R2], “thorough experiments”

[R1], and that the paper is “well written” [R1,R2].

R1: A discussion of how the proposed approach can be ex-
tended to handle other task types is necessary.
It is straightforward to extended our framework to tasks be-

yond classification: TASK2VEC considers a probe network
(feature extractor) + predictor + loss. Tasks with different

output spaces or losses (different number of classes, seg-

mentation, 3D shape, etc.) can be embedded by swapping

out the predictor for a simple task-specific architecture (e.g.,
a linear classifier or a decoder), while keeping the probe net-

work fixed. To demonstrate this, we applied TASK2VEC to

the Taskonomy dataset which allows us to compare classi-

fication, geometric, and semantic pixel labeling tasks (see

Fig. A.1 and the answer to R2 for details).

R1: A fixed probe network for all tasks is not realistic.
We do not suggest using a single network to solve all tasks,

but we use a common architecture to compute the distance
between tasks. Indeed, a key motivation behind our task

embedding is to quickly identify (or even generate) the ap-

propriate task-optimal pretraining and model architecture

to solve the task. The probe network does not need to be

optimal for a specific task, but rather general across many

tasks to be informative of the structure of a task and features

shared with other tasks. As we showed in the paper, probe

networks with different architectures (and widely different

optimality w.r.t. ImageNet performance) produce equivalent

embeddings in terms of computing task distances.

R2: The experiments only perform binary classification.
While the two-layer example is binary for simplicity of ex-

position, all the experiments are multi-class classification

problems with varying numbers of classes in each task.

R2: Extensions and experiments which test the method on

Figure A.1. TASK2VEC distance between Taskonomy tasks [39].

As in [39], similar tasks cluster together: (blue) 2D tasks, (orange)

3D tasks, (green) semantic tasks.

Figure A.2. Norm of the task embedding as the number of samples

in the dataset varies. Larger datasets generally have larger norms,

hence TASK2VEC enables distinguishing tasks that only differ by

the number of shots (training samples/class).

tasks which may be considered more practical or complex.
In response to this suggestion, we computed task embed-

dings for a set of tasks from the Taskonomy dataset [39] us-

ing the same probe network as in the paper and 0.2% of the

available data (Fig. A.1). The TASK2VEC embeddings give

the full distance matrix and shows intuitive clustering into

2D, 3D and semantic categories similar to those found by

Taskonomy but with less compute (5 GPU hours). In com-

parison, [39] conducts pairwise transfer experiments which

required thousands of GPU hours.

R3: The model’s dependency on the ImageNet-pretrained
network may be very large.
Our experiments in the paper, and the additional results in

Fig. A.1, show robust results on tasks very different from

ImageNet (fashion attributes, geometry regression). Short

of an extreme shift (e.g., different imaging modality), we

expect the choice of probe network pre-training to not be a

substantial limitation.

R3: Task embedding model should be able to capture the
difference between many-shot and few-shot problem.
TASK2VEC does enable distinguishing many- and few-shot

tasks. As seen in Fig. A.2, as the number of training samples

increases the norm of the embedding also increases across

a range of tasks. We note that this property is implicitly

exploited when selecting models using our asymmetric dis-

tance, since models trained on less data will be penalized

(they are closer to the trivial zero embedding).

R3: Difference between two tasks with identical dataset but
with different labels.
Yes, Fig. 1 in the paper shows this case (as does the Taskon-

omy experiment shown here). The set of images is identical

for the fashion attribute tasks and only the label output space

changes. Fig. A.1 here further confirm the point, since all

tasks rely on the same RGB images as input.



Proposing an optimal expert for the task
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Figure 3: TASK2VEC often selects the best available experts. Violin plot of the test error distribution (shaded) on tasks
from the CUB-200 dataset (columns) obtained by training a linear classifier over several expert feature extractors (points).
Most specialized feature extractors perform similarly on a given task, and similar or worse than a generic feature extractor
pre-trained on ImageNet (blue triangles). However, in some cases a carefully chosen expert, trained on a related task, can
greatly outperform all others (long lower whiskers). The model selection algorithm based on TASK2VEC can predict an
expert to use for the task (red cross, lower is better) and often recommends the optimal, or near optimal, feature extractor
without performing an expensive brute-force training and evaluation over all available experts. Columns are ordered by norm
of the task embedding vector. Tasks with lower embedding norm have lower error and more “complex” task (task with higher
embedding norm) tend to benefit more from a specialized expert.

sults: Tasks that are correlated in the dataset, such as binary
classes corresponding to the same categorical attribute, may
end up far away from each other and close to other tasks that
are semantically more similar (e.g., the jeans category task
is close to the ripped attribute and the denim material). In
the visualization, this non-trivial grouping is reflected in the
mixture of colors of semantically related nearby tasks.

We also compare the TASK2VEC embedding with a do-
main embedding baseline, which only exploits the input
distribution p(x) rather than the task distribution p(x, y).
While some tasks are highly correlated with their domain
(e.g., tasks from iNaturalist), other tasks differ only on the
labels (e.g., all the attribute tasks of iMaterialist, which
share the same clothes domain). Accordingly, the domain
embedding recovers similar clusters on iNaturalist. How-
ever, on iMaterialst domain embedding collapses all tasks
to a single uninformative cluster (not a single point due to
slight noise in embedding computation).

Task Embedding encodes task difficulty. The scatter-plot
in Fig. 3 compares the norm of embedding vectors vs. per-
formance of the best expert (or task specific model for cases
where we have the diagonal computed). As suggested by
the analysis for the two-layer model, the norm of the task
embedding also correlates with the complexity of the task
on real tasks and architectures.

4.2. Model Selection
Given a task, our aim is to select an expert feature extrac-

tor that maximizes the classification performance on that
task. We propose two strategies: (1) embed the task and
select the feature extractor trained on the most similar task,
and (2) jointly embed the models and tasks, and select a
model using the learned metric (see Section 3.4). Notice
that (1) does not use knowledge of the model performance
on various tasks, which makes it more widely applicable
but requires we know what task a model was trained for and
may ignore the fact that models trained on slightly differ-
ent tasks may still provide an overall better feature extrac-
tor (for example by over-fitting less to the task they were
trained on).

In Table 1 we compare the overall results of the various
proposed metrics on the model selection meta-tasks. On
both the iNat+CUB and Mixed meta-tasks, the Asymmetric
TASK2VEC model selection is close to the ground-truth op-
timal, and significantly improves over both chance, and over
using an generic ImageNet expert. Notice that our method
has O(1) complexity, while searching over a collection of
N experts is O(N).
Error distribution. In Fig. 3, we show in detail the error
distribution of the experts on multiple tasks. It is interest-
ing to observe that the classification error obtained using
most experts clusters around some mean value, and little
improvement is observed over using a generic expert. On

7

Allows to select the best expert to solve a task and substantially reduce error and 
training time.



A snag: Critical Periods
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Two almost identical tasks, yet it is not possible to fine-tune from one to the 
other.

Excursus: Critical Periods for learning

Follow-up: Task reachability. Complexity is physical.



Critical periods
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Critical periods: A time-period in early development where sensory deficits can 
permanently impair the acquisition of a skill

Examples: monocular deprivation, cataracts, imprinting, language acquisition

Deficit Normal training

0 180 + NN

Kitten does not recover 
vision in covered eye

Image from Cnops et al., 2008

Hubel and Wiesel



Critical Learning Periods in Deep Networks

�128A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

Deficit Normal training

0 160+NN



Sensitivity to deficits
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Deficit

0

N N + 40

160



High-level deficits do not have a critical period
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Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018
Picture from “The world is upside down” — The Innsbruck Goggle Experiments of Theodor Erismann and Ivo Kohler, Sachse et al.

Deficits that only change high-level statistics of the data do not show 
a critical period.

was perfectly correct. For example, a participant drew a
picture in a quality as if drawn without wearing reversing
spectacles.

After taking off the glasses, however, participants saw the
whole world upside down, a distortion “in the opposite di-
rection” (negative after-effect), but the reversed vision only

lasted a few minutes.
“The top-bottom perspectives of vision only emerge in

constant interaction with experiences of the other senses
(particularly the tactile sense and muscle sense). Therefore,
the position of the retinal image in the background of the eye
is only significant as long as older experiences from the past
continue to have an effect. In the experiment, they are
reduced step by step and are, via a stage of ‘ambiguous top-
bottom perspective’, connected in a new way with the new
visual impressions” (Kohler, 1951b, p. 33). The studies show
that first, movement behavior returns to normal, and only

then is followed by perception. Successful adaptations to a
changed world of perception require a person's active explo-
ration of and interaction with their environment (Hommel &
Nattkemper, 2011; Kohler, 1951b).

It was always due to Erismann's initiative, verve, experi-
ence, and scientific curiosity thatmore andmore students and

associates were ready to help with new long-term studies

with those special goggles, committing themselves for weeks
or even months. (For example, Kohler wore binocular
reversing spectacles for 24 h a day over a period of 124 days
from November 1946 until March 1947; this was probably
unique within psychological research, cf. Kohler, 1951a, 1964).

The Innsbruck Goggle Experiments were progressive also
in terms of their methodology. By means of the long-term
studies, the Innsbruck department left the lab and investi-
gated various processes and effects in the realm of percep-
tion psychology in the field, that is, under ecologically valid
conditions. Various activities, such as watching a movie or a

circus performance, going to a tavern, after a few days even
bike, motor bike, and going on ski tours, were naturally part
of the studies of the goggle-wearing participants (Figs. 5 and
6). Part of the results were not only subjective data from
self-observation and peer-observation, but also data from
quantitative measures of adaptation performance in
everyday life.

Because of World War II, important results of the Inns-
bruck Goggle Experiments on the topic of “Emergent Percep-
tion” ewhich was the title of a presentation of Erismann 1947
in Bonn (orig. “Werden der Wahrnehmung”; additionally

published as a conference report of the Society of German
Psychologists, DGPs)e could only be publishedwith a delay. In
1948, at the XII. International Congress of Psychology in
Edinburgh, Kohler had the opportunity to open up research
contacts to the English-speaking field of psychology (cf.
Kohler, 1950). The publication of Kohler's habilitation thesis
“On the composition and transition of the world of percep-
tion” (1951a; orig. “Über Aufbau und Wandlungen derFig. 4 e Reversing spectacles by Erismann from 1947; a

metal mirror enables reversing beams concerning top-
bottom orientation.

Fig. 5 e Participant with prismatic goggles (top/bottom) in
Innsbruck (Austria).

c o r t e x 9 2 ( 2 0 1 7 ) 2 2 2e2 3 2 227

High-level deficits do not 
exhibit a critical period

Low-level deficit exhibit a 
critical period



Information is physical
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Idea: When using SGD, the Fisher Information 
adds a drag term controlled by the batch size

Veff = U
|{z}

Real loss

+
k

B
log |F |

| {z }
Drag term

How can the Fisher Information affect the learning dynamics?

SGD MINIMIZES THE FISHER INFORMATION OF THE WIGHTS 
(INDUCTIVE BIAS OF SGD)



Path Integral Approximation and Task Reachability
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p(wf , tf |w0, t0) = e��L(w;D)

Z wf

w0

e�
1

2D

R tf
t0

1
2 u̇(t)

2+V (u(t))dtdu(t)
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Static part Dynamic part

Information Lagrangian Critical Periods

Reachability

SGD EFFECTIVELY MINIMIZES 
THE IBL FOR THE WEIGHTS

Achille, Mbeng, Soatto, The Dynamic Distance Between Tasks, NeurIPS Workshop 2018
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