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Abstract

We compute the transition probability between two learning tasks, and show that
it decomposes into two factors. The first depends on the geometry of the loss
landscape of a model trained on each task, independent of any particular model
used. This is related to a distance function defined using Kolmogorov Complexity,
but is insufficient to predict success in transfer learning, as nearby tasks can be
unreachable via fine-tuning. The second factor depends on the ease of traversing
the path between two tasks. With this dynamic component, we derive strict lower
bounds on the complexity necessary to learn a task starting from the solution to
another.

1 Introduction and related work

Understanding the geometry of the space of tasks can help predict how difficult it is to transfer a
model from one task to another, or across different data domains. This has motivated recent interest
in defining distances between classification tasks [13], but there are shortcomings. Architecture
independent distances, such as lexicographic distances between label sets in a taxonomy, fail to
capture the complex learning dynamics of deep neural networks (DNNs), which can fail in adapting
to slight perturbations of the data distributions, even if the task variable remains identical [2]. On the
other hand, distances between parametric representations of a task, for instance the weights of DNNs
trained on them, fail to capture that very different parameters can represent the exact same posterior
distribution. In order to relate to transfer learning, a distance function would have to be asymmetric
[12] as it is typically easier to fine-tune a simple task from a complex one than vice-versa.

In this paper, we introduce the notion that, in addition to the geometry, the dynamics of the space of
tasks is critical to understanding transfer learning.

To show that, we first define a proper (asymmetric) distance between tasks using ideas from Kol-
mogorov Complexity [8], which is independent of the particular learning algorithm. While such
“static distance” gives qualitatively good results in many cases, it does not fully capture problems,
particularly of domain adaption, where even nearby tasks may be unreachable with fine-tuning [2].
We therefore characterize the probability and expected training time of reaching one task from another,
using tools from quantum physics, in particular Kramer’s rate theory [7, 5] and the path-integral
approach [6]. We then show that such a probability factorizes into two parts. Surprisingly, one turns
out to be precisely the static distance we have defined based on Kolmogorov Complexity. The other,
which we call dynamic distance, depends on the time a stochastic minimization procedure requires to
reach a task from another. Finally, we verify empirically that the distance we define correlates with
the ease of transfer learning.
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2 Static distance between tasks

In general, we call a task any random variable y we want to infer given an observation x and a
training set D = {xi, yi}Ni=1 of i.i.d. samples xi and corresponding target values yi. Given a task, or
equivalently the representing dataset D, we may define the Kolmogorov Structure Function (KSF)
[8] of the task D as

SD(t) = min
LD(M)<t

K(M), (1)

where the Kolmogorov complexity K(M) denotes the minimum description length of a model M
such that the cross-entropy loss LD(M) obtained by the model M on the dataset D is less than t.2
The Lagrangian associated to the minimization problem Equation (1) is

Cβ(M ;D) = LD(M) + βK(M) (2)

which measures the cost of encoding D using the model M when the cost K(M) of encoding the
model is discounted by a factor β. Because of this, we refer to Cβ(D) = minM Cβ(M ;D) as the
complexity of the taskD at level β. Notice that this quantity is closely related to the Information Bottle-
neck of the weights studied in [4], to PAC-Bayes theory [11], and to the MDL principle. Moreover, for
β = 1 it reduces to the Evidence Lower Bound (ELBO) of Variational Inference. While in general in-
computable, we can upper-bound the termK(M) using a simple encoding scheme for the weights [3]:
For a fixed architecture, define the model classM = {q(w)|q(w) is a normal distribution N(µ,Σ)},
and fix a prior p(w) ∼ N(0, λ2I). The cost of encoding the model M = q(w) ∼ N (w0,Σ) once
the prior is fixed, is given by the Kullbach-Liebler (KL) divergence

K(M) ≤ KL( q(w) ‖ p(w) ) =
1

2

[
w2

0

λ2
+

1

λ2
tr Σ + k log λ2 + log(|Σ|)− k

]
,

for any choice of λ > 0. Using this model, we want to upper-bound the complexity Cβ(D) of the
task by minimizing eq. (2). Of course, finding the optimal weights w0 is far from trivial, as it involves
training a deep network on the dataset. However, we can give a description of the optimal Σ for a
weight configuration w0: Assuming w0 is a local minimum and approximating Cβ(q(w);D), we
obtain the minimizer Σ∗ = β

2 (H + β
2λ2 I)−1, which gives the following expression for Cβ(M ;D) as

a function of the local minimum w0:

Cβ(w0;D) ≤ LD(w0) +
β

2

[
‖w0‖2

λ2
+ log

∣∣∣∣2λ2

β
H + I

∣∣∣∣
]
, (3)

where H is the Hessian of the cross-entropy loss LD(w) computed in w0. Notice that this also
coincides with the Fisher Information Matrix [10], which gives a link between the KSF and the Fisher
Information.

Now that we have a notion of complexity of a task, and a way of upper-bounding it using deep
networks, we can use it to define an (asymmetric) distance between tasks: Let D1 and D2 be two
tasks, we define the reachability at level β of D1 from D2, as

R(D2|D1) = Cβ(D1D2)− Cβ(D1).

where D1D2 denotes the concatenation of the two datasets. Intuitively, R(D2|D1) measures the
additional complexity that we need to learn in order to solve the task D2 at the required complexity
level, assuming we have already learned a solution to the task D1.

3 The Dynamic Distance between tasks

But how difficult is for a DNN to find a solution to task D2 starting from task D1? Consider a
network trained with the L2 regularized loss U(w) = LD(w)+γ/2 ‖w‖2: Sample paths, taken to the
continuous limit, evolve according to the stochastic differential equation (SDE) ẇ = f(w)+

√
2Dn(t)

where f(w) = ∇U(w), D is a constant and n is the derivative of a Wiener process [9]. Starting from

2 Note that complexity depends on the level of desired accuracy t. This capture the fact that many tasks are
easy to solve approximately, e.g., using a set of simple yet informative features, but are hard to solve exactly.
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an initial condition w0 at time t0, following the steps detailed in [1, 5], we show that the probability
of following a path w(t) starting from w0 at time t0 is given, using Stratonovich’s convention, by

p(w(t)|w0, t0) = e−
1

2D [U(w(t))−U(w(t0)]e
− 1

2D

∫ t
t0

1
2 [ẇ(τ)2+f(w)2]+D div f(w)dτ

.

Defining the potential V (w) as

V (w) =
1

2
f(w)2 +D div f(w) =

1

2
∇U(w)2 −D∇2U(w), (4)

we can integrate the above path density to obtain the total probability of reaching solution wf in time
∆t = tf − t0 starting from a weight configuration w0 following any path:

p(wf , tf |w0, t0) = e−
1

2D [U(wf )−U(w0)]︸ ︷︷ ︸
Static potential

∫ wf

w0

e−
1

2D

∫ tf
t0

1
2 ẇ(t)2+V (w(t))dt︸ ︷︷ ︸

Reachability

dw(t). (5)

The first part is static in the sense that it depends only on the initial and final configurations and is
independent of the path used to reach it. The second factor measures existence of likely paths w(t)
connecting the two points. It is called reachability because, regardless of how large the drop in static
potential, the absence of probable paths makes transfer learning unlikely to succeed.

In principle, reachability depends both on the task (i.e., the data), and the architecture. However, we
will now show that to a first-order approximation it depends only on information theoretic quantities.

To start, we assume that most paths joining the two points cluster around a few sparse critical paths
that are local maxima of the path density function [5]. Given a critical path (which without loss
of generality we consider along a coordinate axis u to simplify the notation), we can expand the
potential U(w) to second-order around the path as U(u,v) = a(u) + 1

2v · HU(u)v, whereHU(u)
is the curvature (Hessian) of the loss landscape along the path. Under this approximation, following
the derivation in [1], we have two main results: (1) the critical paths follow a deterministic dynamic
along an "effective" potential Ueff (w) = U(w) + D log |HU(w)|, where H is the hessian in the
point w, and (2) the total probability of reaching the solution following the critical path, or one of its
perturbations, is

p(wf , tf |w0, t0) = e−
1

2D∆Ueff (w)

∫ wf

w0

e−
1

2D

∫ tf
t0

1
2 u̇(t)2+V (u(t))dtdu(t). (6)

This is critical, as it shows that both the speed and probability of convergence are controlled by the
effective potential Ueff = U(w) −D log |HU(w)|, which corrects the original potential by a term
that depends on both the diffusion coefficient (which scales as D = k/B, where B is the batch-size
and k is a constant that depends on the architecture), and the curvature (determinant of the Hessian)
at that point. That is, to account for reachability, the potential needs to be corrected with the local
curvature, and the amount of correction depends on the temperature. One consequence of this is the
often observed fact that sharp minima may not be minima at all for this particular potential when the
temperature is sufficiently high (recall that, for a fixed learning rate, the diffusion coefficient scales as
D = k/B, where B is the batch-size and k is a constant that depends on the architecture). Moreover,
this suggests that the dynamic part of the potential can create spurious local minima that can inhibit
learning of new problems in a transfer learning scenario [2].

However, eq. (6) still depends on the geometry of the optimization landscape, rather than properties
intrinsic to the task. We now connect the curvature to the amount of information needed to solve a
task. Using this connection, we are able to characterize the “learnability” (reachability) of a task in
terms of information-theoretic properties of the data. This completes our program of characterizing
the geometry and topology of the space of tasks in a manner that, to first approximation, does not
depend on how the task is actually learned.

To establish a link between the curvature Ueff (w) = U(w) + D log |HU(w)| and the structure
function of the task, note that when the network is trained with weight decay, with coefficient γ, the
effective potential Ueff minimized by the network is given by:

Ueff = U +D log |HU(u)| = LD(w) +
γ

2
‖w‖2 +D log |γI +H(w)|,

where H(w) is the hessian of the cross entropy loss LD(w). By letting β = 2λ2γ we obtain that
the effective potential that affects the network while training with SGD is exactly the complexity
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Figure 1: (Left) Reachability between tasks, based on the relative Kolmogorov complexity. Each
element of the matrix shows the time to convergence when finetuning from a pretraining classification
task (columns) to a target task (rows). Notice that semantically similar task are close to each other,
and that it is easier to go from a complex task to a related simple task than vice-versa. (Center)
Training epochs necessary to fine-tune from one task (row) to another (column). (Right) Scatter plot
of the relation between number of steps necessary to converge and the reachability of two datasets.

Cβ(w;D) of the dataset at level β. Therefore, we may rewrite the first (static) term of the transition
probability in eq. (6) as:

p(wf , tf |w0, t0)static = e−
1

2D∆Cβ(w;D). (7)

This has the important implication that the transition probability is upper-bounded by a static part
that depends solely on the complexity of the task, or more generally on the difference in complexity
between tasks when fine-tuning. To this, however, we must add a dynamic term that also depends
on the architecture of the network and the geometry of the loss landscape, and may in general be
non-trivial and further reduce the reachability of a task.

From eq. (6) and Equation (7), we can derive the Kramer’s convergence rate 1/τK , which is the
expected time of convergence to a minimum, as

1/τK = Ce−
1
D∆Cβ(w;D). (8)

That is, the expected time of convergence scales with the difference in complexities between tasks.

4 Empirical validation

In Figure 1 (Left) we shows for several popular datasets the reachability between tasks computed
using the definition in Section 2 and approximated with a ResNet-18 using eq. (3). Notice that this
matrix makes intuitive sense: semantically similar tasks are closer to each other, e.g., CIFAR-100 is
close to CIFAR-10 and to its two subsets of artificial and natural objects. Similarly, Fashion MNIST
(fashion) is close to color inverted Fashion MNIST (ifashion) and to MNIST. Moreover the matrix
captures the fact that it is generally easier to learn a task after training on a more complex, related,
task (such as going from CIFAR-100 to CIFAR-10), rather than trying to learn a complex task starting
from a simple one (e.g., going from MNIST to CIFAR-100).

From eq. (8) and eq. (7) we know that the distance at level β may be compared with the matrix of the
time necessary to fine-tune from one task to another (i.e., the training time until we reach some loss
threshold), which we show in Figure 1 (Center). In Figure 1 (Right) we show the relation between
time to fine-tune and reachability for several pairs of datasets, which again follows the theoretical
prediction between the two.

5 Discussion

The ability of deep networks to function for tasks other than those trained on is one of the reasons
of their recent widespread diffusion. However, it is very difficult to predict whether such transfer
learning will be successful other than just trying it. In this paper we have laid the foundations to enable
quantifying the ease of transfer learning. This entails first defining and formally characterizing tasks,
and then establishing some sort of topology in the space of tasks. To the best of our knowledge, we
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are the first to attempt this. We bring to bear tools from diverse fields, from Kolmogorov Complexity
to quantum physics, to enable defining and computing sensible notions of distance that correlate with
ease of transfer learning. In the process, we discover interesting connections between seemingly
disparate concepts: The first is between the notion of task reachability, which we introduce, and the
Kolmogorov Structure Function. This in turn is related to information-theoretic treatments of deep
learning that have been recently developed [4]. Furthermore, our analysis points to the importance
of analyzing the dynamics of learning, rather than just focusing on the asymptotics, which confirms
recent empirical discoveries in critical periods and the notion of Information Plasticity [2].
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