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Recap

Group nuisances

- Group convolutions

- Canonical reference frames

- SIFT descriptors

General nuisances

- Minimal information in activation = Invariance to nuisances

- Information Bottleneck
- |IB loss can upper-bounded by introducing an auxiliary variable

- Aside: Variational Auto-Encoder can be seen as a particular case
- Aside: Disentanglement in VAE

How does this relate to standard deep learning?



The Kolmogorov Structure of a Task

How can we define the structure of a task? Define the Kolmogorov Structure Function:

So(t) = min L(D; M)
K(M)<t

Increasing the complexity of the model leads
to big gains in accuracy: We are learning the structure of the problem.

After learning all the structure, we can only
.......... ~ memorize: inefficient asymptotic phase.

Training Loss

| Tangent = 1 in the asymptote: Need to store 1 bit
iIn the model to decrease the loss by 1 bit

Kolmogorov complexity of model

Kolmogorov's Structure Functions and Model Selection, Vereshchagin and Vitanyi, 2002
Information Complexity of Tasks, their Structure and their Distance, Achille et al., 2018



Optimizing using Deep Neural Networks

How do we find the optimal solution?

So(t) = min L(ZD; M)
K(M)<i

l Corresponding Lagrangian

PM) = L(D: M) + AK(M)

Let w be the parameters of the model
Use the bound K(M) < KL(g(w | 9)||p(w))

L) = L M) + AKLig0s | D) pw)
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This loss can be implemented using a DNN and the local reparametrization trick.”

*Variational Dropout and the Local Reparameterization Trick, Kingma et al., 2015

Information Complexity of Tasks, their Structure and their Distance, Achille et al., 2018



Let’s rewrite it using Information Theory

We used an upperbound, what is the best we value it can assume?

ZLM) =E,, ool H, (D |wW)]+ A1KL(gw[2D)||p(w)).

Recall that:

[(w; D) < EglKL(g(w|2)[[p(w))],

which is obtained when p(w) = g(w|D). Hence, on expectation over the datasets,
the best function loss function to use to recover the task structure is:

PM) = Eo[HD
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|IB Lagrangian for the weights



A new Information Bottleneck

D p(yix)
Weights IB |  dataset real distribution |

Overfitting
min £ = Hp,q,(v|2) + B1(D; w)
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Activations IB

. data activations label
Invariance

min L= H, 4(v|z) +B8I/(z; x)
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The PAC-Bayes generalization bound

Catoni, 2007/: McAllester 2013

PAC-Bayes bound (Catoni, 2007; McAllester 2013).

1
(1—1/28) [Hp,q(y|33a w)+ p KL(q(w|D)Hp(w))]
— e ——————————
IB Lagrangian for the weights

Ltest (Q(w |D)) S N

Minimizing the IB Lagrangian for the weights minimizes an upper bound on
the test error.

This gives generalization bounds! (Dziugaite and Roy, 2017)



Can we really minimize the IBL for the weights?

We are making an approximation by assuming that both g(w|D) and p(w) are Gaussian.

Let w* be a local minimum. The optimal amount of gaussian noise is to add is:
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where F(w?) is the Fisher Information Matrix (equiv. Hessian) computed in w*.

> = (I+ F(w0)>_1,

w|?

)\2

Weight Information is bounded by the of the loss landscape”

have low information in the weights.

[(w; D) < | - log [2M° N F(w™) + [




Is this approximation good? Phase transition

Consider a dataset with random labels. There is no structure, so for A < 1we should not
fit anything, and for A > 1 we should memorize everything (see the structure function).
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Even with local approximation, we can observe this behavior in real deep networks.
For real label, we have a “Goldilocks Zone” where we fit without overfitting for A > 1.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



Bias-variance tradeoff

Information is a better measure of complexity than number of parameters

10.0 e Error
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I(w: D)

Model complexity

Information complexity

Parametrizing the complexity with information in the weights, we recover bias-variance
trade-off trend.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
Arora et al., Stronger generalization bounds for deep nets via a compression approach, ICML 2018



A new Information Bottleneck

D p(yix)
Weights IB |  dataset real distribution |

Overfitting
min £ = Hp,q,(v|2) + B1(D; w)
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The Emergence Bound

Info in activations

a0

Minimality of the weights (representation of the training set) induces minimality
(hence invariance) and disentanglement of the activations.

Tight for one layer; for more layers we have:

I(z1; %) < mingep{dim(z) [g( Fmmee) + 1]}

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



How do minimize the information in the weights?

1. Explicitly minimize the IBL for the weights using local reparametrization trick.
2. Let SGD do it for you:

 Empirically we know that SGD tend to find flatter minima.
 We know from the local information bound that flat minima have less
iInformation in the weights.
 Hence, SGD implicitly minimizes the information in the weights.
3. Modify SGD to reduce information more aggressively.

Counterpoint: Are flat minima the whole story?

Warning: These are still open questions and the claims are not proved.



Information in Weights during training

What should we expect from the information in the weights

Maybe something like this?

Information in Weights

Training Epoch



Information during training

Information extraction Information consolidation

Fisher Information during training

300

600

400

200

Fisher Information trace

Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018



A snag: Critical periods in Deep Networks

The network does not classity correctly if
the deficit is removed to late
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A short deficit at epoch ~40 is enough to
Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018 permanently damage the network.



Critical periods

Critical periods. A time-period in early development where sensory deficits can
permanently impair the acquisition of a skill

Examples: monocular deprivation, cataracts, imprinting, language acquisition, ...
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Image from Cnops et al., 2008



Critical learning periods and Information in Weights

Sensitivity to deficits peaks when network is absorbing information.
Is minimal when the network is consolidating information.

Fisher Information and deficit sensitivity

600 — Fisher trace
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Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018



Are flat minima an epiphenomenon?

Fisher Information vs. deficit end
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...but generalization quality is decided

here, far from convergence to minima

Final sharpness

. correlates with

generalization...



