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Variational upper-bound to the IB Lagrangian

The IB Lagrangian is given by:
‘ 1 __% How do we compute this?
q(z|x) L

Introduce an auxiliary variable and consider the minimization problem:

min L = H(y|z) + AE [ KL(g(z | x)||p(2))]
q(z|x),p(z)

Notice that if the task is reconstruction (i.e., y = x) then this is the loss function of a
VAE (with an extra coefficient in front of the KL term).

The VAE loss can be derived from variational inference and can be thought
as a two part code: structure of the data + reconstruction error.

Achille and Soatto. "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)



Learning disentangled representations
(Higgins et al., 2017, Burgess et al., 2017)

Start with very high B and slowly decrease during training.

Beginning: Very strict bottleneck, only encode most important factor
End: Very large bottleneck, encode all remaining factors
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Think of it as a non-linear PCA, where training time disentangles the factors.



Learning disentangled representations
(Higgins et al., 2017, Burgess et al., 2017)

Each component of the learned representation corresponds to a different semantic factor.
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Higgins et al., B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017 | o
Burgess et al., Understanding Disentangling in beta-VAE” 2017 Pictures courtesy of Higgins et al., Burgess et al.



Learning invariant representations for a task

Deeper layers filter increasingly more nuisances
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Stronger bottleneck = more filtering

Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)



The catch

What if we just represent an image by its index in the training set (or by a unique hash)?

< y
24,576 bits 16 bits 4 bits
—  0000000000000000 > 0100
—  0000000000000001 > 0001
—  (0000000000000010 > 0010
—  0000000000000011 g 0101

It Is a sufficient representation and it is close to minimal.



This Information Bottleneck is wishful thinking

The IB Is a for future data we do not have:

min L= H, ,(y|z) + B 1(z; x)

q(z|x)

What we have Is the data collected in the past.

What is the best way to use the past data in view of future tasks?



Training data

(car, horse, deer, ...)
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The Kolmogorov Structure of a Task

Difficult task

Simple task

Training Loss

Kolmogorov complexity of model

The space of solutions can be explored using the Lagrangian:

DNN coding length
upper-bound coding

L =L(D;M)+BK(M)|  ——mrgmosme— K(M) <|KL(q(z[x) || p(2))

The coding length of the weights can be approximated by Variational Inference.



The Local Information Bound

Let w” be a local minimum. The optimal amount of gaussian noise is to add is:

212

p

where F(w?) is the Fisher Information Matrix (equiv. Hessian) computed in w*.

¥ = (1 : F(WO))_I,

log [2A% N F(w™) + 1]

Weight Information is bounded by the of the loss landscape”

have low information in the weights.

*Hochreiter and Schmidhuber, Flat Minima, Neural Computation ,1997



Phase transition

For random labels sharp transition from overfitting to underfitting

For random labels, at 8 = 1 (the VLBO value) there is a phase transition between
overfitting and underfitting.
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Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



Bias-variance tradeoff

Information is a better measure of complexity
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Parametrizing the complexity with information in the weights, we recover bias-variance
trade-off trend.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



The PAC-Bayes generalization bound

Catoni, 2007/: McAllester 2013

PAC-Bayes bound (Catoni, 2007; McAllester 2013).
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IB Lagrangian for the weights

Ltest (Q(w ‘D)) S N

Minimizing the IB Lagrangian for the weights minimizes an upper bound on
the test error (Dziugaite and Roy, 2017; Achille and Soatto, 2017)

This gives generalization bounds! (Dziugaite and Roy, 2017)



A new Information Bottleneck

D p(yix)
Weights IB |  dataset real distribution |

Overfitting
min £ = Hp,q,(v|2) + B1(D; w)

X — L

Activations IB

. data activations label
Invariance

min L= H, 4(v|z) +B8I/(z; x)
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