CS 103: Representation Learning, Information Theory and Control

Lecture 7, Feb 23, 2019

Variational upper-bound to the IB Lagrangian

The IB Lagrangian is given by:

 $\min L = H$ q(z|x)

Introduce an auxiliary variable and consider the minimization problem:

min L = H(y | z)q(z|x),p(z)

VAE (with an extra coefficient in front of the KL term).

as a two part code: structure of the data + reconstruction error.

Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", PAMI 2018 (arXiv 2016)

$$I(y|z) + \lambda I(z;x)$$
 How do we compute this?

$$+ \lambda \mathbb{E}_{p(x)}[KL(q(z \mid x) \parallel p(z))]$$

Notice that if the task is reconstruction (*i.e.*, y = x) then this is the loss function of a

Recall: The VAE loss can be derived from variational inference and can be thought

Learning disentangled representations (Higgins et al., 2017, Burgess et al., 2017)

Start with very high β and slowly decrease during training.

Beginning: Very strict bottleneck, only encode most important factor End: Very large bottleneck, encode all remaining factors

Think of it as a non-linear PCA, where *training time* disentangles the factors.

Learning disentangled representations (Higgins et al., 2017, Burgess et al., 2017)

Components of the representation z

Higgins et al., β -VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017 Burgess et al., Understanding Disentangling in beta-VAE" 2017

Each component of the learned representation corresponds to a different semantic factor.

Pictures courtesy of Higgins et al., Burgess et al.

Learning invariant representations for a task

Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", PAMI 2018 (arXiv 2016)

Deeper layers filter increasingly more nuisances

The catch

What if we just represent an image by its index in the training set (or by a unique hash)?

It is a sufficient representation and it is close to minimal.

This Information Bottleneck is wishful thinking

The IB is a statement of desire for future data we do not have:

$$\min_{q(z|x)} \mathcal{L} = H_{p,q}(y|z) + \beta I(z;x)$$

What we have is the data collected in the past.

What is the best way to use the past data in view of future tasks?

Training data

(car, horse, deer, ...)

airplane automobile bird cat deer dog frog horse ship truck

The Kolmogorov Structure of a Task

Kolmogorov complexity of model

The space of solutions can be explored using the Lagrangian:

$$L = L(\mathcal{D}; M) + \beta K(M) - \frac{up}{m}$$

The coding length of the weights can be approximated by Variational Inference.

DNN coding length pper-bound coding K(M) <p(z))length using

The Local Information Bound

Let w* be a local minimum. The optimal amount of gaussian noise is to add is:

 $\Sigma = (I)$

where $F(w^*)$ is the Fisher Information Matrix (equiv. Hessian) computed in w^* .

$$I(w; \mathcal{D}) \leq \frac{\|w\|^2}{\lambda^2}$$

Weight Information is bounded by the geometry of the loss landscape*

Flat minima have low information in the weights.

* Hochreiter and Schmidhuber, Flat Minima, Neural Computation, 1997

$$+\frac{2\lambda^2}{\beta}F(w_0)\Big)^{-1},$$

$$+\log|2\lambda^2 N F(w^*) + I|$$

Phase transition

For random labels sharp transition from overfitting to underfitting

For random labels, at $\beta = 1$ (the VLBO value) there is a phase transition between overfitting and underfitting.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018

Bias-variance tradeoff

Information is a better measure of complexity

Model complexity

trade-off trend.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018

Information complexity

Parametrizing the complexity with information in the weights, we recover bias-variance

12

The PAC-Bayes generalization bound Catoni, 2007; McAllester 2013

PAC-Bayes bound (Catoni, 2007; McAllester 2013).

$$L_{\text{test}}(q(w|\mathcal{D})) \le \frac{1}{N(1-1/2\beta)},$$

Corollary. Minimizing the IB Lagrangian for the weights minimizes an upper bound on the test error (Dziugaite and Roy, 2017; Achille and Soatto, 2017)

This gives non-vacuous generalization bounds! (Dziugaite and Roy, 2017)

 $\left[H_{p,q}(y|x,w) + \beta \operatorname{KL}(q(w|\mathcal{D})||p(w))\right]$

IB Lagrangian for the weights

13

A new Information Bottleneck

Weights IB Overfitting

Activations IB Invariance

