
CS 103: Representation Learning,
Information Theory and Control
Lecture 6, Feb 15, 2019

 2

VAEs and disentanglement

Assuming a factorized prior for z, a β-VAE optimizes both for the IB
Lagrangian and for disentanglement.

Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)

A β-VAE minimizes the loss function:

Minimality Disentanglement

L = Hp,q(x |z) + �Ex [KL(q(z |x)kp(z))]

= Hp,q(x |z) + � {I(z ; x) + TC(z)}

Factorized prior

 3

Figure 3: Utilisation of data generative factors as a function of coding capacity. Top left: the
average KL (in nats) per factor fi as the training progresses and the total information capacity C
of the latent bottleneck q(z|f) is increased. It can be seen that the early capacity is allocated to
positional latents only (x and y), followed by a scale latent, then shape and orientation latents. Top
right: same but plotted with respect to the reconstruction accuracy. Bottom: image samples and
their reconstructions throughout training as the total information capacity of z increases and the
different latents zi associated with their respective data generative factors become informative. It
can be seen that at 3.1 nats only location of the sprite is reconstructed. At 7.3 nats the scale is also
added reconstructed, then shape identity (15.4 nats) and finally rotation (23.8 nats), at which point
reconstruction quality is high.

to evaluate how much information the model would choose to retain about each factor in order to best
reconstruct the corresponding images given a total capacity constraint. In this model, the factors are
each independently scaled by a learnable parameter, and are subject to independently scaled additive
noise (also learned), similar to the reparameterised latent distribution in �-VAE. This enables us to
form a KL divergence of this factor distribution with a unit Gaussian prior. We trained the model to
reconstruct the images with samples from the factor distribution, but with a range of different target
encoding capacities by pressuring the KL divergence to be at a controllable value, C. The training
objective combined maximising the log likelihood and minimising the absolute deviation from C
(with a hyperparameter � controlling how heavily to penalise the deviation, see Sec. A.2):

L(✓,�;x(f), z, C) = Eq�(z|f)[log p✓(x|z)]� � |DKL

�
q�(z|f) k p(z)

�
� C| (7)

In practice, a single model was trained across of range of C’s by linearly increasing it from a low
value (0.5 nats) to a high value (25.0 nats) over the course of training (see top left panel in Fig. 3).
Consistent with the intuition outlined above, at very low capacities (C < 5 nats), the KLs for all the
factors except the X and Y position factors are zero, with C always shared equally among X and Y.
As expected, the model reconstructions in this range are blurry, only capturing the position of the

6

Learning disentangled representations
(Higgins et al., 2017, Burgess et al., 2017)

Start with very high β and slowly decrease during training.

Beginning: Very strict bottleneck, only encode most important factor

End: Very large bottleneck, encode all remaining factors

Think of it as a non-linear PCA, where training time disentangles the factors.

Components of the representation z

Im
ag

e
se

ed

 4

Learning disentangled representations
(Higgins et al., 2017, Burgess et al., 2017)

Components of the representation z

Higgins et al., β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017
Burgess et al., Understanding Disentangling in beta-VAE” 2017

Im
ag

e
se

ed

Each component of the learned representation corresponds to a different semantic factor.

Pictures courtesy of Higgins et al., Burgess et al.

 5

Multiple Objects

Figure 1: Multi-entity VAE. The encoder takes input images and produces a spatial map of posterior
parameters. The KL-divergence of the posterior distribution against the prior is computed in each
spatial location. The top-N posterior parameters by KL-divergence are selected from the spatial
map, removing the spatial structure. These distributions are sampled, and the samples are passed
independently through a shared convolution / upsampling network. The resulting object feature maps
are aggregated using an element-wise operation, and a final convolutional network produces the
output parameters.

In our visual experiments, the MVAE model assumes p(zn) is a D-dimensional Gaussian with
zero mean and unit variance. The conditional data distribution is implemented as a three-step
deterministic decoding function, f , which first maps each latent object representation to a processed
object representation using a shared function, aggregates the processed object representations together,
and deterministically transforms the result into the parameters of a Bernoulli distribution over pixel
values. Crucially, f is permutation invariant with respect to the set of object representations. This
encourages the model to learn object representations that are consistent and interchangeable.

Shared object processing. In the first stage of the decoder a shared function g : RD ! RK is
applied independently to each latent object representation, resulting in a set of processed object
descriptions on = g(zn), n = 1, . . . , N . These deterministic transformations of the prior latent
variables are themselves random variables, which have dependencies induced by the prior latents.
The K-dimensional object descriptions could be of any shape, but in this work we used 3D tensors
as a structural bias towards representations of visual attributes. We implement g as a network that
transforms each latent vector to a 3D tensor via reshaping, convolutions and upsampling.

Aggregation. The processed object descriptions o1:N are aggregated using a symmetric pooling
function, to form opool, a tensor with the same shape as each of o1:N . In our experiments we used
element-wise sum or max as aggregation functions.

Rendering. After pooling, the resulting opool is mapped (i.e. rendered) to the element-wise parameters
of the decoder distribution ✓ = h(opool). In our experiments opool is a 3D tensor, and h is a
convolutional, upsampling network which outputs pixel-wise Bernoulli logits.

2.1 Maximal information attention

We employ amortized variational inference and learn a parameterized approximate posterior q(zn|x)
for each latent object representation. Unlike prior work [3, 4], we do not employ a learned attention
mechanism in order to localise objects, but instead generate a large collection of candidate object
inferences, from which N objects are selected. This inference method has the advantage that it
circumvents the need for an explicitly learned attention mechanism, which may require a large
number of recurrent passes over the image. This enables us to model scenes with large numbers of
objects, something that was challenging in prior work.

Candidate generation. We generate candidate object inferences for visual scenes using a
convolutional-network which maps input images to a grid of posterior parameters. Each spatial
location in this output feature map is treated as an object, and we perform candidate sub-selection
of this set as described in the next section. After sub-selection the spatial structure present in the
convolutional grid is destroyed, so we tag each object with its relative spatial coordinates at an
intermediate feature map in the convolutional network.

2

Attend, Infer, Repeat (Eslami et al.) Multi-Entity VAE (Nash et al.)

 6

Is the representation “semantic” and domain invariant?

Achille et al., Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies, 2018

The standard architecture alone already promotes invariant representations

 7

Corollary: Ways of enforcing invariance

Regularization by architecture

Reducing dimension (max-pooling) or adding noise (dropout)
increases minimality and invariance.

Stacking layers

Stacking multiple layers makes the representation increasingly minimal.

Task information

I(x; y)

Nuisance information

I(x; n)

Only nuisance information dropped
in a bottleneck (sufficiency).

1

Increasingly more minimal implies
increasingly more invariant to nuisances.

2

The classifier cannot overfit to nuisances.3

Creating a soft bottleneck with controlled noise

 8

Information Dropout: a Variational Bottleneck

bottleneck

Task information

I(x; y)

Nuisance information

I(x; n)

Multiplicative noise ~ log N(0, 𝜎(x))

 Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)

ℒ = Hp,q(y |x) + 𝔼x KL(p(z |x)∥q(z)) = Hp,q(y |x) + 𝔼x[−log |Σ(x) |]
Average log-variance of noise

 9

Learning invariant representations

Deeper layers filter increasingly more nuisances

St
ro

ng
er

 b
ot

tle
ne

ck
 =

 m
or

e
filt

er
in

g

Only informative part of the image Other information is discarded

(Achille and Soatto, 2017)

 Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)

 10

The catch

0000000000000000

0000000000000001

0000000000000010

0000000000000011

x z y

0100

0001

0010

0101

16 bits24,576 bits 4 bits

What if we just represent an image by its index in the training set (or by a unique hash)?

It is a sufficient representation and it is close to minimal.

 11

This Information Bottleneck is wishful thinking

The IB is a statement of desire for future data we do not have:

min
q(z |x)

L = Hp,q(y |z) + � I(z ; x)
<latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w=">AAACOnicbVBNSwMxEM36bf2qevQSLEKLUnZFUBCh4EVBRMGq0C1LNk3bYJJdk1lpu+6P8X9496pHr54Ur/4A09qDXw8GHu/NMDMvjAU34LrPzsjo2PjE5NR0bmZ2bn4hv7h0bqJEU1alkYj0ZUgME1yxKnAQ7DLWjMhQsIvwar/vX9wwbXikzqAbs7okLcWbnBKwUpDf9SVXQXpd7N12Shn2JYE2JSI9yvAePgjSeOM6K3ZveyW8jv2QAcH+Bj4s9nZxpxTkC27ZHQD/Jd6QFNAQJ0H+1W9ENJFMARXEmJrnxlBPiQZOBctyfmJYTOgVabGapYpIZurp4MkMr1mlgZuRtqUAD9TvEymRxnRlaDv7T5jfXl/8z6sl0Nypp1zFCTBFvxY1E4Ehwv3EcINrRkF0LSFUc3srpm2iCQWba+7HGipDzVttyGw03u8g/pLzzbLnlr3TrULleBjSFFpBq6iIPLSNKugAnaAqougOPaBH9OTcOy/Om/P+1TriDGeW0Q84H5+kaawM</latexit><latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w=">AAACOnicbVBNSwMxEM36bf2qevQSLEKLUnZFUBCh4EVBRMGq0C1LNk3bYJJdk1lpu+6P8X9496pHr54Ur/4A09qDXw8GHu/NMDMvjAU34LrPzsjo2PjE5NR0bmZ2bn4hv7h0bqJEU1alkYj0ZUgME1yxKnAQ7DLWjMhQsIvwar/vX9wwbXikzqAbs7okLcWbnBKwUpDf9SVXQXpd7N12Shn2JYE2JSI9yvAePgjSeOM6K3ZveyW8jv2QAcH+Bj4s9nZxpxTkC27ZHQD/Jd6QFNAQJ0H+1W9ENJFMARXEmJrnxlBPiQZOBctyfmJYTOgVabGapYpIZurp4MkMr1mlgZuRtqUAD9TvEymRxnRlaDv7T5jfXl/8z6sl0Nypp1zFCTBFvxY1E4Ehwv3EcINrRkF0LSFUc3srpm2iCQWba+7HGipDzVttyGw03u8g/pLzzbLnlr3TrULleBjSFFpBq6iIPLSNKugAnaAqougOPaBH9OTcOy/Om/P+1TriDGeW0Q84H5+kaawM</latexit><latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w=">AAACOnicbVBNSwMxEM36bf2qevQSLEKLUnZFUBCh4EVBRMGq0C1LNk3bYJJdk1lpu+6P8X9496pHr54Ur/4A09qDXw8GHu/NMDMvjAU34LrPzsjo2PjE5NR0bmZ2bn4hv7h0bqJEU1alkYj0ZUgME1yxKnAQ7DLWjMhQsIvwar/vX9wwbXikzqAbs7okLcWbnBKwUpDf9SVXQXpd7N12Shn2JYE2JSI9yvAePgjSeOM6K3ZveyW8jv2QAcH+Bj4s9nZxpxTkC27ZHQD/Jd6QFNAQJ0H+1W9ENJFMARXEmJrnxlBPiQZOBctyfmJYTOgVabGapYpIZurp4MkMr1mlgZuRtqUAD9TvEymRxnRlaDv7T5jfXl/8z6sl0Nypp1zFCTBFvxY1E4Ehwv3EcINrRkF0LSFUc3srpm2iCQWba+7HGipDzVttyGw03u8g/pLzzbLnlr3TrULleBjSFFpBq6iIPLSNKugAnaAqougOPaBH9OTcOy/Om/P+1TriDGeW0Q84H5+kaawM</latexit><latexit sha1_base64="5ix/e5Cegp0ObsQK/e6TCJk524w=">AAACOnicbVBNSwMxEM36bf2qevQSLEKLUnZFUBCh4EVBRMGq0C1LNk3bYJJdk1lpu+6P8X9496pHr54Ur/4A09qDXw8GHu/NMDMvjAU34LrPzsjo2PjE5NR0bmZ2bn4hv7h0bqJEU1alkYj0ZUgME1yxKnAQ7DLWjMhQsIvwar/vX9wwbXikzqAbs7okLcWbnBKwUpDf9SVXQXpd7N12Shn2JYE2JSI9yvAePgjSeOM6K3ZveyW8jv2QAcH+Bj4s9nZxpxTkC27ZHQD/Jd6QFNAQJ0H+1W9ENJFMARXEmJrnxlBPiQZOBctyfmJYTOgVabGapYpIZurp4MkMr1mlgZuRtqUAD9TvEymRxnRlaDv7T5jfXl/8z6sl0Nypp1zFCTBFvxY1E4Ehwv3EcINrRkF0LSFUc3srpm2iCQWba+7HGipDzVttyGw03u8g/pLzzbLnlr3TrULleBjSFFpBq6iIPLSNKugAnaAqougOPaBH9OTcOy/Om/P+1TriDGeW0Q84H5+kaawM</latexit>

What we have is the data collected in the past.

What is the best way to use the past data in view of future tasks?

Training data Testing

Weights

Invariant representation

{ }, (car, horse, deer, …)

