CS 103: Representation Learning, Information Theory and Control

Lecture 6, Feb 15, 2019

VAEs and disentanglement

A β -VAE minimizes the loss function:

Assuming a factorized prior for z, a β -VAE optimizes both for the IB Lagrangian and for disentanglement.

Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", PAMI 2018 (arXiv 2016)

Learning disentangled representations (Higgins et al., 2017, Burgess et al., 2017)

Start with very high β and slowly decrease during training.

Beginning: Very strict bottleneck, only encode most important factor End: Very large bottleneck, encode all remaining factors

Think of it as a non-linear PCA, where *training time* disentangles the factors.

Learning disentangled representations (Higgins et al., 2017, Burgess et al., 2017)

Components of the representation z

Higgins et al., β -VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017 Burgess et al., Understanding Disentangling in beta-VAE" 2017

Each component of the learned representation corresponds to a different semantic factor.

Pictures courtesy of Higgins et al., Burgess et al.

Multiple Objects

Attend, Infer, Repeat (Eslami et al.)

Good reconstruction, correct count

Multi-Entity VAE (Nash et al.)

Encoder

Decoder

Is the representation "semantic" and domain invariant?

Achille et al., Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies, 2018

Corollary: Ways of enforcing invariance

The standard architecture alone already promotes invariant representations

Regularization by architecture

Reducing dimension (max-pooling) or adding noise (dropout) increases minimality and invariance.

Nuisance information *l(x; n)*

> Task information I(x; y)

Only nuisance information dropped in a bottleneck (sufficiency).

Stacking multiple layers makes the representation increasingly minimal.

The classifier cannot overfit to nuisances.

Increasingly more minimal implies increasingly more invariant to nuisances.

Stacking layers

Information Dropout: a Variational Bottleneck

Creating a soft bottleneck with controlled noise

 $\mathcal{L} = H_{p,q}(y \mid x) + \mathbb{E}_x \operatorname{KL}(p(z \mid x) \mid q(z)) = H_{p,q}(y \mid x) + \mathbb{E}_x[-\log|\Sigma(x)|]$

bottleneck

Nuisance information *l(x; n)*

Task information I(x; y)

Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", PAMI 2018 (arXiv 2016)

Multiplicative noise ~ log $N(O, \sigma(x))$

Learning invariant representations

(Achille and Soatto, 2017)

Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation", PAMI 2018 (arXiv 2016)

Deeper layers filter increasingly more nuisances

The catch

What if we just represent an image by its index in the training set (or by a unique hash)?

It is a sufficient representation and it is close to minimal.

This Information Bottleneck is wishful thinking

The IB is a statement of desire for future data we do not have:

$$\min_{q(z|x)} \mathcal{L} = H_{p,q}(y|z) + \beta I(z;x)$$

What we have is the data collected in the past.

What is the best way to use the past data in view of future tasks?

Training data

(car, horse, deer, ...)

airplane automobile bird cat deer dog frog horse ship truck