Representation Learning and Information Bottleneck
Desiderata for representations

An optimal representation z of the data x for the task y is a stochastic function $z \sim p(z|x)$ that is:

- **Sufficient**: $I(z; y) = I(x; y)$
- **Minimal**: $I(x; z)$ is minimal among sufficient z
- **Invariant to nuisances**: If $n \perp y$, then $I(n; z) = 0$
- **Maximally disentangled**: $TC(z) = KL(p(z)\|\prod_i p(z_i))$ is minimized
Information Bottleneck Lagrangian

A minimal sufficient representation is the solution to:

$$\text{minimize}_{p(z|x)} \quad I(x; z)$$

s.t. \quad H(y|z) = H(y|x)

Information Bottleneck Lagrangian:

$$\mathcal{L} = H_{p,q}(y|z) + \beta I(z; x)$$

cross-entropy \quad \text{regularizer}

Trade-off: between sufficiency and minimality, regulated by the parameter.
Invariant if and only if minimal
We only need to enforce minimality (easy) to gain invariance (difficult)

Proposition. (A. and Soatto, 2017) Let z be a sufficient representation and n a nuisance. Then,

$$l(z; n) \leq l(z; x) - l(x; y)$$

Moreover, there exists a nuisance n for which equality holds.

> A representation is maximally insensitive to all nuisances iff it is minimal
Corollary: Ways of enforcing invariance
The standard architecture alone already promotes invariant representations

Regularization by architecture
Reducing dimension (max-pooling) or adding noise (dropout) increases minimality and invariance.

Nuisance information $l(x; n)$

Only nuisance information dropped in a bottleneck (sufficiency).

Task information $l(x; y)$

Increasingly more minimal implies increasingly more invariant to nuisances.

The classifier cannot overfit to nuisances.

Stacking layers
Stacking multiple layers makes the representation increasingly minimal.
Information Dropout: a Variational Bottleneck
Creating a soft bottleneck with controlled noise

\[\mathcal{L} = H_{p,q}(y|z) + \beta I(z;x) = H_{p,q}(y|z) - \beta \log \alpha(x) \]

Nuisance information \(I(x; n) \)
Task information \(I(x; y) \)
Multiplicative noise \(\sim N(0, \alpha(x)) \)

Learning invariant representations

(Achille and Soatto, 2017)

Deeper layers filter increasingly more nuisances

Stronger bottleneck = more filtering

Only informative part of the image

Other information is discarded