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Seen last time

What is a nuisance for a task?


How do we design nuisance invariant representations?

Invariance, equivariance, canonization 

A linear transformation is group equivariant if and only if it is a group convolution

(no proof)
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Today’s program

1. A linear transformation is group equivariant if and only if it is a group convolution


• Building equivariant representations for translations, sets and graphs


2. Image canonization with equivariant reference frame detector


• Applications to multi-object detection

3. Accurate reference frame detection: the SIFT descriptor


• A sufficient statistic for visual inertial systems



Canonization
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Invariance by canonization

Idea: Instead of finding an invariant representation, apply a transformation to put 
the input in a standard form.

I(ξ, ν) ⟼ gν→ν0
∘ I(ξ, ν) = I(ξ, ν0)

gν→ν0
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Canonization for translations

Suppose we want to canonize the image with respect to translations.

1. Decide a reference point that is equivariant for translations. 
Examples: The barycenter of the image, the maximum (assuming it’s unique)


2. Find the position of the reference point

3. Center the reference point

Reference point

(minimum)
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Equivariant reference frame detector

R(g ⋅ x) = g ⋅ R(x)
A reference frame detector R for a group G is any function R(x): X → G such that 

That is, a reference frame detector is any equivariant function from X to G.

Example: Let G = R2 be the group of translations. Then R(x) = “position of the 
maximum of x” is a reference frame, assuming the maximum is unique.
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From equivariant frame detector to invariant representations

f(x) = R(x)−1 ⋅ x

Proposition. Let R be a reference frame detector for the group G. Define a 
representation f(x) as:

Then f(x) is a G-invariant representation.



 8

From equivariant frame detector to invariant representations

f(x) = R(x)−1 ⋅ x

Proposition. Let R be a reference frame detector for the group G. Define a 
representation f(x) as:

Then f(x) is a G-invariant representation.

Proof: f(g ⋅ x) = R(g ⋅ x)−1 ⋅ (g ⋅ x)
= (g ⋅ R(x))−1 ⋅ g ⋅ x
= R(x)−1 ⋅ g−1 ⋅ g ⋅ x
= R(x)−1 ⋅ x
= f(x)
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The canonization pipeline

Canonization consists of the following steps

I(ξ, ν) ⟼ gν′�→ν ∘ I(ξ, ν) = I(ξ, ν0)

R(x)−1

1. Build an equivariant reference frame detector

2. Choose a “canonical” reference frame

3. Find the reference frame of the input image

4. Invert the transformation to make the reference frame canonical

Reference frame of input Canonical frame
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Some examples of canonization in vision

Document analysis: Find border of the document and un-warp the image prior to 
analysis.

Also: Normalize contrast and illumination

Image from https://blogs.dropbox.com/tech/2016/08/fast-document-rectification-and-enhancement/
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Saccades

Image Trace of saccades
Eyes move rapidly while looking at a fixed object.

Video and Images from https://en.wikipedia.org/wiki/Saccade

Can we consider this a form of translation invariance by canonization?
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The R-CNN model for multi-object detection

Region proposal: find regions of the image that may contain an interesting object

(i.e., reference frame proposal)

CNN classifier: warp the region to put it in canonical form (invariance) and feed it 
to a classifier

Region proposal + CNN classifier = R-CNN
Image from Girshick et al., 2014
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Region Proposal

Originally: hand-crafted proposal mechanisms based on saliency, uniformity of texture, scale, 
and so on.
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Region Proposal

Illumination invariant colorspace

Originally: hand-crafted proposal mechanisms based on saliency, uniformity of texture, scale, 
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Illumination Invariant Imaging: Applications in Robust Vision-based
Localisation, Mapping and Classification for Autonomous Vehicles

Will Maddern1, Alexander D. Stewart1, Colin McManus1, Ben Upcroft2, Winston Churchill1 and Paul Newman1

Abstract— In this paper we propose the use of an illumination
invariant transform to improve many aspects of visual locali-
sation, mapping and scene classification for autonomous road
vehicles. The illumination invariant colour space stems from
modelling the spectral properties of the camera and scene illu-
mination in conjunction, and requires only a single parameter
derived from the image sensor specifications. We present results
using a 24-hour dataset collected using an autonomous road
vehicle, demonstrating increased consistency of the illumination
invariant images in comparison to raw RGB images during
daylight hours. We then present three example applications of
how illumination invariant imaging can improve performance
in the context of vision-based autonomous vehicles: 6-DoF
metric localisation using monocular cameras over a 24-hour
period, life-long visual localisation and mapping using stereo,
and urban scene classification in changing environments. Our
ultimate goal is robust and reliable vision-based perception and
navigation - an attractive proposition for low-cost autonomy for
road vehicles.

I. INTRODUCTION

Robust and reliable operation regardless of weather condi-
tions and time of day is a critical requirement for vision-
based autonomous road vehicles [1]. A major challenge
facing visual localisation, navigation and scene classifica-
tion approaches in outdoor environments is the change in
appearance across a wide range of illumination conditions,
in particular those encountered during a typical 24-hour
day-night cycle. Visual navigation systems that build upon
robust features such as SIFT [2] have produced impressive
results in recent years [3]; however, as demonstrated in
[4], these robust features do not provide true invariance
to the illumination variation encountered in typical outdoor
environments.

Much of the motivation behind scale and illumination
invariant feature development comes from the field of large-
scale image search and retrieval [5], where knowledge of
the source image sensor properties is typically unavailable.
In a robotics context, however, we can exploit full knowledge
of the image sensor characteristics to infer true physical
quantities about the scene. The process of inferring physical
properties of objects from imagery is often referred to as
passive remote sensing, and is a common in the field of
satellite observation [6]. In a similar vein, research in the
field of colour constancy [7] has produced a number of
attempts to determine image features that identify the spectral

1Will Maddern, Alex Stewart, Colin McManus, Winston Churchill and
Paul Newman are with the Mobile Robotics Group, University of Oxford,
UK. {wm,alexs,colin,winston,pnewman}@robots.ox.ac.uk

2Ben Upcroft is with the School of Electrical Engineering and
Computer Science, Queensland University of Technology, Australia.
ben.upcroft@qut.edu.au

Fig. 1. Using an illumination invariant colour space to improve image
similarity at different times of day. RGB images (top row) are converted to
an illumination invariant colour space (bottom row) using knowledge of the
camera spectral response. This significantly reduces variation due to sunlight
and shadow, yielding a greyscale image where grey values depend primarily
on the material properties of the objects in the scene. Note that what appears
to be a shadow under the building is in fact a section of resurfaced tarmac,
distinguished due to its material properties despite significant change in
illumination spectrum and shadow.

properties of objects present in an image, regardless of the
spectrum or intensity of the source illuminant.

In this paper we seek to exploit full knowledge of the
spectral properties of the cameras on an autonomous vehicle
platform, and present an “illumination invariant” colour
space that reduces the effects of sunlight and shadow present
in raw RGB images, as illustrated in Fig. 1. The next section
presents related approaches, and Section III summarises
relevant portions of the colour constancy literature to derive
the illumination invariant transform. The illumination invari-
ant images are evaluated over a 24-hour period in Section
IV, and results are presented for example applications of
metric monocular localisation in Section V, life-long stereo
localisation in Section VI, and urban scene classification in
Section VII. Section VIII concludes the paper.

II. RELATED WORK

Robust image-point features such as SIFT [2], SURF [8]
and BRIEF [9] compute descriptors based on combinations
of gradients and histograms of local greyscale patches around
the point of interest. This results in a degree of invariance to
absolute illumination levels. However, these techniques are

Maddern et al., ICRA 2014
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Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

whose power of discovering parts or objects is left unevaluated. In
this work, we use multiple complementary strategies to deal with
as many image conditions as possible. We include the locations
generated using [3] in our evaluation.

2.3 Other Sampling Strategies

Alexe et al. [2] address the problem of the large sampling space
of an exhaustive search by proposing to search for any object, in-
dependent of its class. In their method they train a classifier on the
object windows of those objects which have a well-defined shape
(as opposed to stuff like “grass” and “sand”). Then instead of a full
exhaustive search they randomly sample boxes to which they apply
their classifier. The boxes with the highest “objectness” measure
serve as a set of object hypotheses. This set is then used to greatly
reduce the number of windows evaluated by class-specific object
detectors. We compare our method with their work.

Another strategy is to use visual words of the Bag-of-Words
model to predict the object location. Vedaldi et al. [34] use jumping
windows [5], in which the relation between individual visual words
and the object location is learned to predict the object location in
new images. Maji and Malik [23] combine multiple of these rela-
tions to predict the object location using a Hough-transform, after
which they randomly sample windows close to the Hough maxi-
mum. In contrast to learning, we use the image structure to sample
a set of class-independent object hypotheses.

To summarize, our novelty is as follows. Instead of an exhaus-
tive search [8, 12, 16, 36] we use segmentation as selective search
yielding a small set of class independent object locations. In con-
trast to the segmentation of [4, 9], instead of focusing on the best
segmentation algorithm [3], we use a variety of strategies to deal
with as many image conditions as possible, thereby severely reduc-
ing computational costs while potentially capturing more objects
accurately. Instead of learning an objectness measure on randomly
sampled boxes [2], we use a bottom-up grouping procedure to gen-
erate good object locations.

3 Selective Search

In this section we detail our selective search algorithm for object
recognition and present a variety of diversification strategies to deal
with as many image conditions as possible. A selective search al-
gorithm is subject to the following design considerations:

Capture All Scales. Objects can occur at any scale within the im-
age. Furthermore, some objects have less clear boundaries
then other objects. Therefore, in selective search all object
scales have to be taken into account, as illustrated in Figure
2. This is most naturally achieved by using an hierarchical
algorithm.

Diversification. There is no single optimal strategy to group re-
gions together. As observed earlier in Figure 1, regions may
form an object because of only colour, only texture, or because
parts are enclosed. Furthermore, lighting conditions such as
shading and the colour of the light may influence how regions
form an object. Therefore instead of a single strategy which
works well in most cases, we want to have a diverse set of
strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of
possible object locations for use in a practical object recogni-
tion framework. The creation of this set should not become a
computational bottleneck, hence our algorithm should be rea-
sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our
selective search. Bottom-up grouping is a popular approach to seg-
mentation [6, 13], hence we adapt it for selective search. Because
the process of grouping itself is hierarchical, we can naturally gen-
erate locations at all scales by continuing the grouping process until
the whole image becomes a single region. This satisfies the condi-
tion of capturing all scales.

As regions can yield richer information than pixels, we want to
use region-based features whenever possible. To get a set of small
starting regions which ideally do not span multiple objects, we use
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ssize(ri,r j) encourages small regions to merge early. This forces
regions in S, i.e. regions which have not yet been merged, to
be of similar sizes throughout the algorithm. This is desir-
able because it ensures that object locations at all scales are
created at all parts of the image. For example, it prevents a
single region from gobbling up all other regions one by one,
yielding all scales only at the location of this growing region
and nowhere else. ssize(ri,r j) is defined as the fraction of the
image that ri and r j jointly occupy:

ssize(ri,r j) = 1−
size(ri)+ size(rj)

size(im)
, (4)

where size(im) denotes the size of the image in pixels.

sfill(ri,r j) measures how well region ri and r j fit into each other.
The idea is to fill gaps: if ri is contained in r j it is logical to
merge these first in order to avoid any holes. On the other
hand, if ri and r j are hardly touching each other they will
likely form a strange region and should not be merged. To
keep the measure fast, we use only the size of the regions and
of the containing boxes. Specifically, we define BBi j to be the
tight bounding box around ri and r j. Now sfill(ri,r j) is the
fraction of the image contained in BBi j which is not covered
by the regions of ri and r j:

fill(ri,r j) = 1−
size(BBi j)− size(ri)− size(ri)

size(im)
(5)

We divide by size(im) for consistency with Equation 4. Note
that this measure can be efficiently calculated by keeping track
of the bounding boxes around each region, as the bounding
box around two regions can be easily derived from these.

In this paper, our final similarity measure is a combination of the
above four:

s(ri,r j) = a1scolour(ri,r j)+a2stexture(ri,r j)+

a3ssize(ri,r j)+a4s f ill(ri,r j), (6)

where ai ∈ {0,1} denotes if the similarity measure is used or
not. As we aim to diversify our strategies, we do not consider any
weighted similarities.

Complementary Starting Regions. A third diversification
strategy is varying the complementary starting regions. To the
best of our knowledge, the method of [13] is the fastest, publicly
available algorithm that yields high quality starting locations. We
could not find any other algorithm with similar computational effi-
ciency so we use only this oversegmentation in this paper. But note
that different starting regions are (already) obtained by varying the
colour spaces, each which has different invariance properties. Ad-
ditionally, we vary the threshold parameter k in [13].

3.3 Combining Locations

In this paper, we combine the object hypotheses of several varia-
tions of our hierarchical grouping algorithm. Ideally, we want to
order the object hypotheses in such a way that the locations which
are most likely to be an object come first. This enables one to find
a good trade-off between the quality and quantity of the resulting

object hypothesis set, depending on the computational efficiency of
the subsequent feature extraction and classification method.

We choose to order the combined object hypotheses set based
on the order in which the hypotheses were generated in each in-
dividual grouping strategy. However, as we combine results from
up to 80 different strategies, such order would too heavily empha-
size large regions. To prevent this, we include some randomness
as follows. Given a grouping strategy j, let r

j
i be the region which

is created at position i in the hierarchy, where i = 1 represents the
top of the hierarchy (whose corresponding region covers the com-
plete image). We now calculate the position value v

j
i as RND× i,

where RND is a random number in range [0,1]. The final ranking

is obtained by ordering the regions using v
j
i .

When we use locations in terms of bounding boxes, we first rank
all the locations as detailed above. Only afterwards we filter out
lower ranked duplicates. This ensures that duplicate boxes have a
better chance of obtaining a high rank. This is desirable because
if multiple grouping strategies suggest the same box location, it is
likely to come from a visually coherent part of the image.

4 Object Recognition using Selective

Search

This paper uses the locations generated by our selective search for
object recognition. This section details our framework for object
recognition.

Two types of features are dominant in object recognition: his-
tograms of oriented gradients (HOG) [8] and bag-of-words [7, 27].
HOG has been shown to be successful in combination with the part-
based model by Felzenszwalb et al. [12]. However, as they use an
exhaustive search, HOG features in combination with a linear clas-
sifier is the only feasible choice from a computational perspective.
In contrast, our selective search enables the use of more expensive
and potentially more powerful features. Therefore we use bag-of-
words for object recognition [16, 17, 34]. However, we use a more
powerful (and expensive) implementation than [16, 17, 34] by em-
ploying a variety of colour-SIFT descriptors [32] and a finer spatial
pyramid division [18].

Specifically we sample descriptors at each pixel on a single scale
(σ = 1.2). Using software from [32], we extract SIFT [21] and two
colour SIFTs which were found to be the most sensitive for de-
tecting image structures, Extended OpponentSIFT [31] and RGB-
SIFT [32]. We use a visual codebook of size 4,000 and a spatial
pyramid with 4 levels using a 1x1, 2x2, 3x3. and 4x4 division.
This gives a total feature vector length of 360,000. In image clas-
sification, features of this size are already used [25, 37]. Because
a spatial pyramid results in a coarser spatial subdivision than the
cells which make up a HOG descriptor, our features contain less
information about the specific spatial layout of the object. There-
fore, HOG is better suited for rigid objects and our features are
better suited for deformable object types.

As classifier we employ a Support Vector Machine with a his-
togram intersection kernel using the Shogun Toolbox [28]. To ap-
ply the trained classifier, we use the fast, approximate classification
strategy of [22], which was shown to work well for Bag-of-Words
in [30].

Our training procedure is illustrated in Figure 3. The initial posi-
tive examples consist of all ground truth object windows. As initial
negative examples we select from all object locations generated
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whose power of discovering parts or objects is left unevaluated. In
this work, we use multiple complementary strategies to deal with
as many image conditions as possible. We include the locations
generated using [3] in our evaluation.

2.3 Other Sampling Strategies

Alexe et al. [2] address the problem of the large sampling space
of an exhaustive search by proposing to search for any object, in-
dependent of its class. In their method they train a classifier on the
object windows of those objects which have a well-defined shape
(as opposed to stuff like “grass” and “sand”). Then instead of a full
exhaustive search they randomly sample boxes to which they apply
their classifier. The boxes with the highest “objectness” measure
serve as a set of object hypotheses. This set is then used to greatly
reduce the number of windows evaluated by class-specific object
detectors. We compare our method with their work.

Another strategy is to use visual words of the Bag-of-Words
model to predict the object location. Vedaldi et al. [34] use jumping
windows [5], in which the relation between individual visual words
and the object location is learned to predict the object location in
new images. Maji and Malik [23] combine multiple of these rela-
tions to predict the object location using a Hough-transform, after
which they randomly sample windows close to the Hough maxi-
mum. In contrast to learning, we use the image structure to sample
a set of class-independent object hypotheses.

To summarize, our novelty is as follows. Instead of an exhaus-
tive search [8, 12, 16, 36] we use segmentation as selective search
yielding a small set of class independent object locations. In con-
trast to the segmentation of [4, 9], instead of focusing on the best
segmentation algorithm [3], we use a variety of strategies to deal
with as many image conditions as possible, thereby severely reduc-
ing computational costs while potentially capturing more objects
accurately. Instead of learning an objectness measure on randomly
sampled boxes [2], we use a bottom-up grouping procedure to gen-
erate good object locations.

3 Selective Search

In this section we detail our selective search algorithm for object
recognition and present a variety of diversification strategies to deal
with as many image conditions as possible. A selective search al-
gorithm is subject to the following design considerations:

Capture All Scales. Objects can occur at any scale within the im-
age. Furthermore, some objects have less clear boundaries
then other objects. Therefore, in selective search all object
scales have to be taken into account, as illustrated in Figure
2. This is most naturally achieved by using an hierarchical
algorithm.

Diversification. There is no single optimal strategy to group re-
gions together. As observed earlier in Figure 1, regions may
form an object because of only colour, only texture, or because
parts are enclosed. Furthermore, lighting conditions such as
shading and the colour of the light may influence how regions
form an object. Therefore instead of a single strategy which
works well in most cases, we want to have a diverse set of
strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of
possible object locations for use in a practical object recogni-
tion framework. The creation of this set should not become a
computational bottleneck, hence our algorithm should be rea-
sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our
selective search. Bottom-up grouping is a popular approach to seg-
mentation [6, 13], hence we adapt it for selective search. Because
the process of grouping itself is hierarchical, we can naturally gen-
erate locations at all scales by continuing the grouping process until
the whole image becomes a single region. This satisfies the condi-
tion of capturing all scales.

As regions can yield richer information than pixels, we want to
use region-based features whenever possible. To get a set of small
starting regions which ideally do not span multiple objects, we use
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Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.
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this work, we use multiple complementary strategies to deal with
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2.3 Other Sampling Strategies
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gions together. As observed earlier in Figure 1, regions may
form an object because of only colour, only texture, or because
parts are enclosed. Furthermore, lighting conditions such as
shading and the colour of the light may influence how regions
form an object. Therefore instead of a single strategy which
works well in most cases, we want to have a diverse set of
strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of
possible object locations for use in a practical object recogni-
tion framework. The creation of this set should not become a
computational bottleneck, hence our algorithm should be rea-
sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our
selective search. Bottom-up grouping is a popular approach to seg-
mentation [6, 13], hence we adapt it for selective search. Because
the process of grouping itself is hierarchical, we can naturally gen-
erate locations at all scales by continuing the grouping process until
the whole image becomes a single region. This satisfies the condi-
tion of capturing all scales.

As regions can yield richer information than pixels, we want to
use region-based features whenever possible. To get a set of small
starting regions which ideally do not span multiple objects, we use
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Originally: hand-crafted proposal mechanisms based on saliency, uniformity of texture, scale, 
and so on.



Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al., 2016
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CNN based region proposal

Nowadays: The same network does both the region proposal and the 
classification inside each region

4
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Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with
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Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention’ of this unified network.

into a convolutional layer for detecting multiple class-
specific objects. The MultiBox methods [26], [27] gen-
erate region proposals from a network whose last
fully-connected layer simultaneously predicts mul-
tiple class-agnostic boxes, generalizing the “single-
box” fashion of OverFeat. These class-agnostic boxes
are used as proposals for R-CNN [5]. The MultiBox
proposal network is applied on a single image crop or
multiple large image crops (e.g., 224⇥224), in contrast
to our fully convolutional scheme. MultiBox does not
share features between the proposal and detection
networks. We discuss OverFeat and MultiBox in more
depth later in context with our method. Concurrent
with our work, the DeepMask method [28] is devel-
oped for learning segmentation proposals.

Shared computation of convolutions [9], [1], [29],
[7], [2] has been attracting increasing attention for ef-
ficient, yet accurate, visual recognition. The OverFeat
paper [9] computes convolutional features from an
image pyramid for classification, localization, and de-
tection. Adaptively-sized pooling (SPP) [1] on shared
convolutional feature maps is developed for efficient
region-based object detection [1], [30] and semantic
segmentation [29]. Fast R-CNN [2] enables end-to-end
detector training on shared convolutional features and
shows compelling accuracy and speed.

3 FASTER R-CNN

Our object detection system, called Faster R-CNN, is
composed of two modules. The first module is a deep
fully convolutional network that proposes regions,
and the second module is the Fast R-CNN detector [2]
that uses the proposed regions. The entire system is a

single, unified network for object detection (Figure 2).
Using the recently popular terminology of neural
networks with ‘attention’ [31] mechanisms, the RPN
module tells the Fast R-CNN module where to look.
In Section 3.1 we introduce the designs and properties
of the network for region proposal. In Section 3.2 we
develop algorithms for training both modules with
features shared.

3.1 Region Proposal Networks

A Region Proposal Network (RPN) takes an image
(of any size) as input and outputs a set of rectangular
object proposals, each with an objectness score.3 We
model this process with a fully convolutional network
[7], which we describe in this section. Because our ulti-
mate goal is to share computation with a Fast R-CNN
object detection network [2], we assume that both nets
share a common set of convolutional layers. In our ex-
periments, we investigate the Zeiler and Fergus model
[32] (ZF), which has 5 shareable convolutional layers
and the Simonyan and Zisserman model [3] (VGG-16),
which has 13 shareable convolutional layers.

To generate region proposals, we slide a small
network over the convolutional feature map output
by the last shared convolutional layer. This small
network takes as input an n ⇥ n spatial window of
the input convolutional feature map. Each sliding
window is mapped to a lower-dimensional feature
(256-d for ZF and 512-d for VGG, with ReLU [33]
following). This feature is fed into two sibling fully-
connected layers—a box-regression layer (reg) and a
box-classification layer (cls). We use n = 3 in this
paper, noting that the effective receptive field on the
input image is large (171 and 228 pixels for ZF and
VGG, respectively). This mini-network is illustrated
at a single position in Figure 3 (left). Note that be-
cause the mini-network operates in a sliding-window
fashion, the fully-connected layers are shared across
all spatial locations. This architecture is naturally im-
plemented with an n⇥n convolutional layer followed
by two sibling 1⇥ 1 convolutional layers (for reg and
cls, respectively).

3.1.1 Anchors
At each sliding-window location, we simultaneously
predict multiple region proposals, where the number
of maximum possible proposals for each location is
denoted as k. So the reg layer has 4k outputs encoding
the coordinates of k boxes, and the cls layer outputs
2k scores that estimate probability of object or not
object for each proposal4. The k proposals are param-
eterized relative to k reference boxes, which we call

3. “Region” is a generic term and in this paper we only consider
rectangular regions, as is common for many methods (e.g., [27], [4],
[6]). “Objectness” measures membership to a set of object classes
vs. background.

4. For simplicity we implement the cls layer as a two-class
softmax layer. Alternatively, one may use logistic regression to
produce k scores.



Learning to find and canonize interesting regions of the image
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Spatial Transformer Network

Localisation network selects a local reference frame in the image

Transformer resamples using

that reference frame

Can we do something more similar to saccades?



The previous methods find a transformation that approximatively canonize an 
object. But what if we want a very accurate reference frame?
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When precision matters

Images from Oxford Buildings Dataset
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When precision matters

Images from Oxford Buildings Dataset



 17

Problems

Reference frame need to be unique and robust.


Due to occlusions, we can only trust local features and need redundancy


Need to be robust to all geometric transformations and small deformations.


Need to be robust to changes of illuminations, shadows, …
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SIFT: Scale Invariant Feature Transform

Image from http://www.robots.ox.ac.uk/~vgg/practicals/instance-recognition/index.html



Something for you
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SIFT: Finding the scale

Find “interesting points” (i.e., local maxima and minima) at all scales.

Done by constructing the scale space of the image and finding the first scale at 
which a local maximum (minimum) stops being a local maximum (minimum).
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Harris corner detector

Points along edges are not useful keypoints, as they cannot be localized exactly.

Idea: Compute the Hessian at each interesting point. Consider only the points 
that have large eigenvalues of the same magnitude.

Image from https://docs.opencv.org/3.4.2/dc/d0d/tutorial_py_features_harris.html



 21

Find corner orientation

Decide the orientation of the corner by plotting the histogram of the gradients 
orientation and find the most frequent orientation.

Image from http://aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoint-orientation/

If multiple orientations are very frequent (> 0.8 * max), select all.
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Corner descriptor

Gradient orientation is the only invariant to contrast changes.

Image from http://aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoint-orientation/

Idea: Describe local patch around corner using orientations of the gradients.
Bin together gradients in a patch for 

robustness to small deformations
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The final algorithm (with refinements)

Image from http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html



Robust Inference for Visual-Inertial Sensor Fusion, K. Tsotsos et al., 2015
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Feature matching in Visual-Inertial SLAM system

Demo video from https://sites.google.com/site/ktsotsos/visual-inertial-sensor-fusion

https://sites.google.com/site/ktsotsos/visual-inertial-sensor-fusion


Robust Inference for Visual-Inertial Sensor Fusion, K. Tsotsos et al., 2015
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Feature matching in Visual-Inertial SLAM system

Demo video from https://sites.google.com/site/ktsotsos/visual-inertial-sensor-fusion

https://sites.google.com/site/ktsotsos/visual-inertial-sensor-fusion
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Summary

We want something:

• Equivariant to change of scale: search over scale space

• Equivariant to translations: find corners (points in edges and flat region are not 

localizable exactly)

• Equivariant to rotations: find most frequent gradient orientation

• Invariant to contrast changes: Use gradient orientation to describe patch

Put all this requirements together to get the SIFT descriptor (or one of the many 
variants: SIFT, ASIFT, DSP-SIFT, SURF, KAZE, AKAZE, ORB, …)

Take-away: a set of corners with an associated description vector is a surprisingly 
powerful representation for many complex tasks.
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Where are we now

Sensing

Cognition

Action
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Where are we now

Sensing

Cognition

Action

Invariance to simple geometric 
nuisances, corner detectors, …


