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What is a task

Making a decision based on the data

Classification: Decide the class of an image (the prototypical supervised problem)

Survival: Decide the best actions to take to survive (Reinforcement Learning)

Reconstruction: Decide which information to store to reconstruct the data 
(generative models, unsupervised learning)
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What is a representation

Any function of the data which is useful for a task.

Neuronal activity

Image sources https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging#/media/File:Haxby2001.jpg, https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Brightness
A simple organism may only need the 

light source direction.

Corners
Popular in Computer Vision before DNNs, 
central to visual inertial systems and AR.

Hidden Layer

https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging#/media/File:Haxby2001.jpg
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Representation as a Service

Head Tasks
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Tail tasks

We can try to solve to the most common tasks, but what about the tails?

Are these two pictures 
of the same person?

Is this platypus healthy?

Idea: Provide the user with a powerful and flexible representation that allows 
them to easily solve their task.
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Representation as a Service
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Representation as a Service

1. What is the best representation for a task?

2. Which tasks can we solve using a given representation?


The representation used by an health provider is probably not useful to a 
movie recommendation system.


3. Can we build a “universal” representation?

4. Can we fine-tune a representation for a particular task?

5. Can we provide the user with error bounds? Privacy bounds?
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But what is a good representation?

Data Processing Inequality:

No function of the data (representation) can be better than the data themself for 
decision and control (task).

Three main ingredients of DNNs: Convolutions, ReLU, Max-Pool

Destroy information

However, most organisms and algorithms use complex representations that 
deeply alter the input. In Deep Learning we regularly torture the data to extract 
the results:
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Questions

Is the destruction of information necessary for learning?

Why some properties (invariance, hierarchical organization) emerge naturally in 
very different systems?
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Why do we need to forget?

Curse of dimensionality: In general, to approximate p(y | x) the number of samples 
should scale exponentially with the number of dimensions.

If x is a 256x256 image, this means we would need ~1028462 samples.

Then, how can we learn on natural images?
1. Nuisance invariance (reduce the dimension of the input)

2. Compositionally (reduce the dimension of the representation space)

3. Complexity prior on the solution (reduce the dimension of hypothesis space)

Let’s assume we want to learn a classifier p(y | x) given an input image x.



Nuisance invariance
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Nuisance variability

2.2. IMAGE FORMATION: THE IMAGE, THE SCENE, THE NUISANCE, AND THE LAMBERT-AMBIENT (LA) MODEL17

additive noise component n arising from the compound effects of un-modeled uncer-
tainty, although there is no added generality as n can be subsumed in the definition of
⌫. It is also useful to isolate the nuisances that act as a group on the scene, g, although
again we could lump them into the definition of ⌫. If we model explicitly the group
and the noise, we have a model of the form

I = h(g, ⇠, ⌫) + n (2.5)

This is the formal model that we will adopt throughout the manuscript (Figure 2.2).
In the next section we make this formal notation a bit more precise with a specific
instantiation, the so-called Ambient-Lambert model. More realistic instantiations are
described in Appendix B.1. The reader interested in generalizations of the simple sym-
metric binary decision case can consult any number of textbooks, for instance [53].

I = h(⇠, ⌫)

Ĩ = h(⇠, ⌫̃), ⌫̃ = illumination

⌫̃ = viewpoint

⌫̃ = visibility

Ĩ = h(⇠̃, ⌫̃), ⇠̃ 6= ⇠

Figure 2.2: The same scene ⇠ can yield many different images depending on particular
instantiations of the nuisance ⌫.

2.2 Image formation: The image, the scene, the nui-
sance, and the Lambert-Ambient (LA) Model

In this section, that can be skipped at first reading, we instantiate the formal notation
(2.5) for a simple model used throughout the manuscript. All the symbols used, to-
gether with their meaning, are summarized for later reference in Appendix C in the
order in which they appear. This section is necessary to make the formal notation
above meaningful. However, its content will actually not be used until Sections 3.1,
3.4, and will be exploited in full only starting in Section 4. Therefore, the reader can
skip this section at first reading, and come back to it, or to Appendix C, as needed. The
model we introduce in this section is the simplest instantiation of (2.5) that is mean-

Change of nuisance

Change of identity

Images from Steps Toward a Theory of Visual Information, S. Soatto, 2011
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How to use nuisance variability
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A good representation should collapse images differing only for nuisance variability.

Quotienting with respect to nuisances reduces the dimensionality of the space of 
images, and simplifies learning the successive parts of the pipeline.
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Group nuisances

Examples: Translations, rotations, change of scale/contrast, small diffeomorphisms

Well understood for translation and scale (week 2). The solution inspired and 
justifies the use of convolutions and max-pooling.

f(x) = f(g ∘ x) g ∈ G, x ∈ Xfor all

Given a group G acting on the space of data X, we say that a representation f(x) is 
invariant to G if:

A representation is maximal invariant if all other invariant representations are a 
function of it.
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Problems with group nuisances

1. Rapidly becomes difficult for more complex groups

2. Groups acting on 3D objects do not act as groups on the image 

 
 
 

3. Not all nuisances are groups (e.g., occlusions)
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More general nuisances

Idea: A nuisance as everything that does not carry information about the task.

minf I( f(x); x) − λ I( f(x); task)

Introduce the Information Bottleneck Lagrangian:

Information the representation 
has about the task

Total information

where I(x; y) is the mutual information. The solution to the Lagrangian (for λ → +∞) is a 
maximally invariant representation for all nuisances (week 4).

We can thus rephrase the problem of nuisance invariance as a much simpler 
variational optimization problem.
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Learning invariant representations

Deeper layers filter increasingly more nuisances
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Only informative part of the image Other information is discarded

 Achille and Soatto, "Information Dropout: Learning Optimal Representations Through Noisy Computation”, PAMI 2018 (arXiv 2016)



Compositional representations
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Compositional representations

Humans can easily solve task by combining concepts:

“Find a blue large cherry”

We can easily solve this task, even if we have never seen a blue cherry before.
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Compositionally requires disentanglement

To learn a good compositional representation, we first need to learn to decompose 
the image in reusable semantic factors:

Problem. But what are “semantic factors of variation”?

Color: Blue

Size: Large

Shape: Cherry

Factors of variation can be learnt in succession in a life-long learning setting and 
used in the future for one-shot or zero-shot learning.

This mitigates the curse of dimensionality: each factor is easy to learn, but combined 
they yield exponentially many objects.
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Learning disentangled representations
(Higgins et al., 2017, Burgess et al., 2017)

Higgins et al., β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017 
Burgess et al., Understanding Disentangling in beta-VAE” 2017 Pictures courtesy of Higgins et al., Burgess et al.

Possible answer through the Minimum Description Length principle (week 7):

Encoder

Input

Decoder

Azimuth

Elevation

Lighting

Latent traversal

x x̂

Representation z



 21

Learning disentangled representations
(Higgins et al., 2017, Burgess et al., 2017)

Components of the representation z 

Higgins et al., β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017 
Burgess et al., Understanding Disentangling in beta-VAE” 2017
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Pictures courtesy of Higgins et al., Burgess et al.

Possible answer through the Minimum Description Length principle (week 7):
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Complexity of the classifier

We can define the (Kolmogorov) complexity of a classifier as the length of the 
shortest program implementing it. Leads to the PAC-Bayes bound:

1. Nuisance invariance (reduce the dimension of the input)

2. Compositionally (reduce the dimension of the representation)

3. Complexity prior on the solution (reduce the dimension of hypothesis space)

PAC-Bayes bound (Catoni, 2007; McAllester 2013).



Weeks 5-6
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Emergence of invariant and disentangled representations 

Theorem 2 (informal). In DNNs, low-complexity classifier have invariant and 
disentangled representations.

Theorem 1 (informal). Stochastic gradient descent biases the optimization process 
toward recovering low-complexity solutions.

p(wf , tf |w0, t0) = e��L(w;D)

Z wf

w0

e�
1

2D

R tf
t0

1
2 u̇(t)

2+V (u(t))dtdu(t)
<latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU="></latexit><latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU="></latexit><latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU=">AAACiHicbZFdb9MwFIadwGCUjxW45OaICinVoHKqoYEQ0gQV4oKLIdFuUtNGjuNs1pwPxSdUlfFv4T9xx7/BySINNo5k6/E57/HH66RSUiOlvz3/1u2dO3d37w3uP3j4aG/4+MlCl03NxZyXqqxPE6aFkoWYo0QlTqtasDxR4iS5+NjWT76LWsuy+IbbSqxydlbITHKGLhUPf1bBJs5eAsbZj01MW6BjeA9ibV5BNBMKGUQ5w3POlPlig827q+XMjm0kC4yN67RrN2cWus4oqxk3oTXTWa/AToGt4qroOC3RNDbA8XoK+7AIGodjSNFCCi3HwxGd0C7gJoQ9jEgfx/Hwl9uTN7kokCum9TKkFa4Mq1FyJewgarSoGL9gZ2LpsGC50CvTGWnhhcukkJW1GwVCl/27w7Bc622eOGVrgr5ea5P/qy0bzN6sjCyqBkXBLw/KGgVYQvsrkMpacFRbB4zX0t0V+DlzPqH7u4EzIbz+5JuwmE5COgm/HoyOPvV27JJn5DkJSEgOyRH5TI7JnHBvx9v3DrzX/sCn/qH/9lLqe33PU/JP+B/+AIDgwSo=</latexit><latexit sha1_base64="afp5fSgDfev6ch0MDdx5tnjO8JU="></latexit>

Corollary (Theorem 1 + 2). DNNs are biased toward learning invariant and 
disentangled representations.



Information and actions
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The MDL principle allows top-down inference

The MDL principle allows correct interpretation of low-level features through the 
interpretation that makes it easier to explain the global image.

Which sometimes can go wrong:
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Inputs are ambiguous, fortunately we can move 

12 CHAPTER 1. PREAMBLE

Figure 1.2: In the absence of sufficiently informative data (e.g., one image), priors
enable classification that, occasionally, can be incorrect if the nuisances and scene
concur to form a visual illusion. The scene on the top-left looks like a girl picking up a
ball (image courtesy of Preventable.com), rather than a flat painting on the road surface.
Similarly, the purposeful collection of objects on the bottom looks like meaningful
symbols when seen from a carefully selected (non-accidental) vantage point.

not fit into this framework. I hope that this work provides a seed that others can grow or amend.
This manuscript also lends some analytical support for the notion of embodied cognition

that has been championed by cognitive roboticists and philosophers including [29, 103, 183,
140, 123, 15].

Finally, the work of Naftali Tishby and co-workers, starting from [173], has been addressing
similar questions using an information-theoretic framework; work is underway to combine and
reconcile the two approaches.

Image courtesy of Preventable.com

Single inputs are often hard or impossible to interpret correctly. However, 
intelligent agents can move to acquire more information.

Without assuming a prior, we can’t detect objects from a single image.
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The connection between intelligence and control

Tunicate, is an organism capable of mobility until it finds a suitable rock to cement 
itself in place. Once it becomes stationary, it digests its own cerebral ganglion cells.

1.1. HOW TO READ THIS MANUSCRIPT 9

Squirts, or Tunicates, shown in Figure 1.1. These are organisms that possess a nervous
system (ganglion cells) and the ability to move. They spend part of their lives as preda-
tors, but eventually settle on a rock, become stationary and thence swallow their own
brain.6 Scaling and occlusion play a critical role: The first makes the continuum limit
relevant, the second makes control a critical element in the analysis. These are present
in a number of remote sensing modalities, including optical, infrared, multi-spectral
imaging, as well as active ranging such as radar, lidar, time-of-flight, etc.

Figure 1.1: The Sea Squirt, or Tunicate, is an organism capable of mobility until it
finds a suitable rock to cement itself in place. Once it becomes stationary, it digests its
own cerebral ganglion cells, or “eats its own brain,” and develops a thick covering, a
“tunic” for self defense.6

1.1 How to read this manuscript

This manuscript is designed to allow different levels of reading. Some of the material
requires some background beyond calculus and linear algebra. To make the manuscript
self-contained, basic elements of topology, variational methods and optimization, im-
age processing, radiometry, etc. are provided in a series of appendices. These are
color coded. The parts of the main text that require background in the corresponding
discipline are coded with the same color. The reader can then either read through the
colored text if he or she is familiar with that subject, disregarding the appendices, or
use the appendix as a reference in case he or she is not familiar with the subject, or
skip the colored text altogether. The manuscript is structured to allow getting the “big
picture” without any mathematical formalism by just reading the black text.

6This is sometimes used as a metaphor of tenure in academic institutions.

Image and caption from Steps Toward a Theory of Visual Information, S. Soatto, 2011
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Embodied Intelligence

Sensing

Cognition

Action
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Representations for Embodied Intelligence

Unlike standard machine learning, we can act on the environment to collect more 
data or modify the state of the system.


The representation we learn should interact with control. In particular:

1. What is the best action to take to minimize the uncertainty of the representation?

2. Is the representation grounded in the environment? For example, what happens 

if we move one single object? Will only one component of the representation 
change?



