
Group nuisances, invariance and equivariance
Draft of notes for CS 103

Alessandro Achille
Department of Computer Science

University of California, Los Angeles

1 Task and nuisances

Assume we observe input data x ∼ p(x), sampled from a (possibly unknown) distribution p(x). To
fix the ideas, in the following we will think of x as an image, but it can be data in any format and
sensory modality, such as a feature vector, or an audio signal. Given this data, we want to infer the
distribution of an hidden random variable y ∼ p(y|x), which we will refer as our task.

This setting is quite general, and includes several (if not most) common problems in machine learning.
For example:

• Image classification: In this case x is an image, and y is the label associated to the image
(e.g., cat, dog, . . .).

• Object detection: x is again an image, while y is a collection of bounding boxes (encoding
size and position of the objects), and the class of the object.

• 3-D reconstruction: x are multiple images, or a video sequence, and y is the 3-D geometry
(descibed as a set of surfaces or a cloud of points) associated to the scene.

In general, the observed image x can depend on a number of factors, also called factors of variation.
For example, the image of an object depends on: the 3D shape of the object, the texture of the object,
the illumination of the scene, and the point of view from which the picture is taken.

Some of these factors carry information about the task: For example in an object classification task,
changing the shape of an object is also likely to change its class and therefore change the answers
to the task. On the other hand, other factors do not influence the task: for example, changing the
illumination, or the point of view should not change the answer to an object classification task. We
refer to these as ”nuisance factors” for the task. More formally:

Definition 1. Assume without loss of generality that our input data x can be written as x = I(e, n)
for e, n ∼ p(e, n). We say that n is a nuisance factor for the task y if

p(y|I(e, n)) = p(y|I(e, n′)),

for all e ∈ E and n ∈ N . Note that this is the same as saying that I(y;n) = 0, that is, the nuisance
factor n does not carry information about the task variable y.

Notice that the definition of nuisance depends on the task. For example, assume the task is to
recognize whether two images are pictures of the same person or not. Then, the particular clothes
worn by the person are a nuisance for the task. On the other hand, if the task is to classify the style of
the objects in the picture, then the roles would be inverted: the clothes would not be a nuisance, and
instead the identity of the person wearing them would now become a nuisance.

2 Nuisance invariance

Most of the information contained in the image is due to nuisance variability [2]. If we could find a
representation z = φ(x) of x that is not affected by nuisance variability, we could reduce the effective
dimension of the input space without losing information about y, therefore potentially simplifying
the learning problem. This motivates the following definition:

Definition 2. We say that a representation φ(x) : X → Z is invariant to a nuisance n if

φ(I(e, n)) = φ(I(e, n′)),

for all e ∈ E and n, n′ ∈ N .

However, we now face two problems:

1. It is often very difficult construct an invariant representation for a given nuisance. Indeed, it
can be as hard as solving the task itself;

2. Nuisances depends on the task, so we would need to build a different representation for each
task.

The good news are that many tasks in computer vision share a common subset of nuisances, which
have a relatively simpler structure. Examples of such common nuisances are: translations and
rotations of the image plane, change of contrast, illumination, change of point of view. Some of these
nuisances further have a group structure, which makes finding invariant representations particularly
amenable, as we will now see.

3 Group nuisances

3.1 Groups and group actions

Recall that a group is a set G, together with a group operation · : G×G→ G which satisfies the
following axioms:

1. There is an element e ∈ G called group identity such that e · g = g · e = g for each g ∈ G;

2. For each g ∈ G there is g−1 ∈ G, called the inverse of g, such that g · g−1 = g−1 · g = e;

3. The operation is associative: For each g, h, k ∈ G, we have (g · h) · k = g · (h · k).
When clear from the context, the group operation is omitted and we write ab instead of a · b. A useful
property derived from the above axioms is the rule for the inverse of a product (ab)−1 = b−1a−1.

Examples. The following are some of the groups that are of interest to us:

1. The group (Z,+) of integers with addition. In this case, 0 ∈ G is the group identity and −x
is the inverse of x;

2. The group Z/Zk = {0, 1, . . . , k − 1} of integers with addition modulo k. This is also
known as the cyclic group of order k, and is sometimes denoted with Ck or Zk, or written
in multiplicative form as Ck = {e, r, . . . , rk−1}, where ra · rb = ra+b and rk = e;

3. The group of rotations of the plane that are multiples of 2π/k degrees, or, equivalently, the
group of rotational symmetries of a regular polyhedron with k vertexes. Notice that this
group can be identified with the cyclic group Ck = {e, r, . . . , rk−1}, where r is the rotation
of 2π/k degrees;

4. The group of translations in the plane. This can be identifies with G = R× R, where the
composition of two translation (u, v), (x, y) ∈ R× R is given by the sum (u+ x, v + y).

5. The group GL(n) of invertible n× n matrixes with multiplication (the group identity is of
course the identity matrix I);

6. The group of 3-D rotation matrixes SO(3);

7. The group Sn of permutations of n elements, which can equivalently be written as the group
of bijective fucntions f : {1, . . . , n} → {1, . . . , n} with composition between functions.

Given a group G and a set X , we say that a function · : G ·X → X is an action of G on X if:

1. e · x = x for each x ∈ X , where e ∈ G is the group identity;

2. (gh) · x = g · (h · x).
Group actions are an important tool as they endow a set X with additional structure deriving from
the group. In our case, X will often be a set of images, and G a group of nuisances acting on them.

2

Examples.

1. Action of translations on images: Let X = {f : R2 → R} be the set of all gray-scale
(infinitely large) images. Define the translation g = (u, v) on an image f(x, y) as (g ·
f)(x, y) := f(x− u, y − v).

2. Action of rotations on images: consider again the continuous grey-scale images, and
let r ∈ SO(2) be a rotation of θ degrees. We can define the action (g · f)(x, y) =
f(cos(θ)x+ sin(θ), sin(θ)x− cos(θ)y)

3.2 Group nuisances

Definition 3. We say that n is a group nuisance if we there is a group G and an action · : G×I → G,
such that for any n, n′ ∈ N we can find gn→n′ ∈ G such that I(e, n′) = gn→n′ · I(e, n).

3.3 Invariance and equivariance

Given two spaces X and Y , and a group G which acts on X with action ·X and on Y with action ·Y ,
we say that a representation φ : X → Y is G-equivariant if

φ(g ·X x) = g ·Y φ(x),

for all g ∈ G and x ∈ X . We say that φ is G-invariant if

φ(g ·X x) = φ(x).

Notice that invariance is a particular case of equivariance when the action on Y is trivial, i.e., when
g ·Y y = y for all y ∈ Y .

3.4 Linear equivariant representations

Note: This section follows [1], but assuming a simpler setting to simplify the proof.

Given a set of indices X and a vector space V , let LV (X) := {f : X → V } be the vector space of
functions from X to V .1 When V = R, we simply write L(X). Notice that if a group G acts on the
set of indices X , this action can be extended to L(X) naturally using (g · f)(x) := f(g−1x).

This notation is useful to define several type of data in machine learning. For example:

1. Continuous black and white images are a function f : R2 → R in L(R2), while color
images are a function f : R2 → R3 in LR3(R2).

2. Discretized images can be thought as a function f : {1, . . . , n} × {1, . . . , n} → R, and
hence an element of L({1, . . . , n}2);

3. Let (X,E) be a graph: if the input is a scalar value associated to each vertex or each edge,
then it can be written as an element of L(X) or L(E) respectively.

Theorem 1. Let G be a countable group and let X = G with the natural action given group
composition. Given two functions f, g ∈ L(X), define their G-convolution f ?G g as

(f ?G g)(x) :=
∑
v∈G

f(xv−1)g(v).

Then, a linear representation φ : L(X)→ L(X) is G-equivariant if and only if φ(f) = f ?G g for
some g ∈ L(X).

1 LV (X) is a vector space with addition and multiplication by scalar defined by (αf + βg)(x) := αf(x) +
βg(x).

3

Proof. (⇐) We need to prove that φ(u · f) = u · φ(f) for any u ∈ G. Expanding the last term we
obtain:

(u · φ(f))(x) = (f ?G g)(u
−1x)

=
∑
v∈G

f((u−1x)v−1)g(v)

=
∑
v∈G

f(u−1(xv−1))g(v)

=
∑
v∈G

(u · f)(xv−1)g(v)

= ((u · f) ?G g)(x)
= φ(u · f)(x).

(⇒) Let δg ∈ L(X) be the function such that δv(x) = 1 if x = v and 0 otherwise. Notice that
v · δu = δvu. Notice that any f ∈ L(x) can be written as f(x) =

∑
v∈G f(v)δv(x) (recall that we

are assuming X = G). Then,

φ(f)(x) = φ(
∑
v∈G

f(v)δv)(x)

=
∑
v∈G

f(v)φ(δv)(x)

=
∑
v∈G

f(v)φ(v · δe)(x)

=
∑
v∈G

f(v)(v · φ(δe))(x)

=
∑
v∈G

f(v)g(v−1x)

=
∑
w∈G

f(xw−1)g(w)

= (f ?G g)(x),

where we have defined g = φ(δe), with e ∈ G is the group identity, and we used the change of
variables w = v−1x.

References
[1] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in

neural networks to the action of compact groups. arXiv preprint arXiv:1802.03690, 2018.
[2] Stefano Soatto. Steps towards a theory of visual information: Active perception, signal-to-symbol

conversion and the interplay between sensing and control. arXiv preprint arXiv:1110.2053, 2011.

4

	Task and nuisances
	Nuisance invariance
	Group nuisances
	Groups and group actions
	Group nuisances
	Invariance and equivariance
	Linear equivariant representations

